首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhu J  Fan H  Periole X  Honig B  Mark AE 《Proteins》2008,72(4):1171-1188
A protocol is presented for the global refinement of homology models of proteins. It combines the advantages of temperature-based replica-exchange molecular dynamics (REMD) for conformational sampling and the use of statistical potentials for model selection. The protocol was tested using 21 models. Of these 14 were models of 10 small proteins for which high-resolution crystal structures were available, the remainder were targets of the recent CASPR exercise. It was found that REMD in combination with currently available force fields could sample near-native conformational states starting from high-quality homology models. Conformations in which the backbone RMSD of secondary structure elements (SSE-RMSD) was lower than the starting value by 0.5-1.0 A were found for 15 out of the 21 cases (average 0.82 A). Furthermore, when a simple scoring function consisting of two statistical potentials was used to rank the structures, one or more structures with SSE-RMSD of at least 0.2 A lower than the starting value was found among the five best ranked structures in 11 out of the 21 cases. The average improvement in SSE-RMSD for the best models was 0.42 A. However, none of the scoring functions tested identified the structures with the lowest SSE-RMSD as the best models although all identified the native conformation as the one with lowest energy. This suggests that while the proposed protocol proved effective for the refinement of high-quality models of small proteins scoring functions remain one of the major limiting factors in structure refinement. This and other aspects by which the methodology could be further improved are discussed.  相似文献   

2.
In this study, the application of temperature‐based replica‐exchange (T‐ReX) simulations for structure refinement of decoys taken from the I‐TASSER dataset was examined. A set of eight nonredundant proteins was investigated using self‐guided Langevin dynamics (SGLD) with a generalized Born implicit solvent model to sample conformational space. For two of the protein test cases, a comparison of the SGLD/T‐ReX method with that of a hybrid explicit/implicit solvent molecular dynamics T‐ReX simulation model is provided. Additionally, the effect of side‐chain placement among the starting decoy structures, using alternative rotamer conformations taken from the SCWRL4 modeling program, was investigated. The simulation results showed that, despite having near‐native backbone conformations among the starting decoys, the determinant of their refinement is side‐chain packing to a level that satisfies a minimum threshold of native contacts to allow efficient excursions toward the downhill refinement regime on the energy landscape. By repacking using SCWRL4 and by applying the RWplus statistical potential for structure identification, the SGLD/T‐ReX simulations achieved refinement to an average of 38% increase in the number of native contacts relative to the original I‐TASSER decoy sets and a 25% reduction in values of Cα root‐mean‐square deviation. The hybrid model succeeded in obtaining a sharper funnel to low‐energy states for a modeled target than the implicit solvent SGLD model; yet, structure identification remained roughly the same. Without meeting a threshold of near‐native packing of side chains, the T‐ReX simulations degrade the accuracy of the decoys, and subsequently, refinement becomes tantamount to the protein folding problem. Proteins 2013. 2012 Published by Wiley Periodicals, Inc.  相似文献   

3.
We describe a method based on Rosetta structure refinement for generating high-resolution, all-atom protein models from electron cryomicroscopy density maps. A local measure of the fit of a model to the density is used to directly guide structure refinement and to identify regions incompatible with the density that are then targeted for extensive rebuilding. Over a range of test cases using both simulated and experimentally generated data, the method consistently increases the accuracy of starting models generated either by comparative modeling or by hand-tracing the density. The method can achieve near-atomic resolution starting from density maps at 4-6 Å resolution.  相似文献   

4.
Georg Kuenze  Jens Meiler 《Proteins》2019,87(12):1341-1350
Computational methods that produce accurate protein structure models from limited experimental data, for example, from nuclear magnetic resonance (NMR) spectroscopy, hold great potential for biomedical research. The NMR-assisted modeling challenge in CASP13 provided a blind test to explore the capabilities and limitations of current modeling techniques in leveraging NMR data which had high sparsity, ambiguity, and error rate for protein structure prediction. We describe our approach to predict the structure of these proteins leveraging the Rosetta software suite. Protein structure models were predicted de novo using a two-stage protocol. First, low-resolution models were generated with the Rosetta de novo method guided by nonambiguous nuclear Overhauser effect (NOE) contacts and residual dipolar coupling (RDC) restraints. Second, iterative model hybridization and fragment insertion with the Rosetta comparative modeling method was used to refine and regularize models guided by all ambiguous and nonambiguous NOE contacts and RDCs. Nine out of 16 of the Rosetta de novo models had the correct fold (global distance test total score > 45) and in three cases high-resolution models were achieved (root-mean-square deviation < 3.5 å). We also show that a meta-approach applying iterative Rosetta + NMR refinement on server-predicted models which employed non-NMR-contacts and structural templates leads to substantial improvement in model quality. Integrating these data-assisted refinement strategies with innovative non-data-assisted approaches which became possible in CASP13 such as high precision contact prediction will in the near future enable structure determination for large proteins that are outside of the realm of conventional NMR.  相似文献   

5.
Thompson J  Baker D 《Proteins》2011,79(8):2380-2388
Prediction of protein structures from sequences is a fundamental problem in computational biology. Algorithms that attempt to predict a structure from sequence primarily use two sources of information. The first source is physical in nature: proteins fold into their lowest energy state. Given an energy function that describes the interactions governing folding, a method for constructing models of protein structures, and the amino acid sequence of a protein of interest, the structure prediction problem becomes a search for the lowest energy structure. Evolution provides an orthogonal source of information: proteins of similar sequences have similar structure, and therefore proteins of known structure can guide modeling. The relatively successful Rosetta approach takes advantage of the first, but not the second source of information during model optimization. Following the classic work by Andrej Sali and colleagues, we develop a probabilistic approach to derive spatial restraints from proteins of known structure using advances in alignment technology and the growth in the number of structures in the Protein Data Bank. These restraints define a region of conformational space that is high-probability, given the template information, and we incorporate them into Rosetta's comparative modeling protocol. The combined approach performs considerably better on a benchmark based on previous CASP experiments. Incorporating evolutionary information into Rosetta is analogous to incorporating sparse experimental data: in both cases, the additional information eliminates large regions of conformational space and increases the probability that energy-based refinement will hone in on the deep energy minimum at the native state.  相似文献   

6.
In silico prediction of a protein’s tertiary structure remains an unsolved problem. The community-wide Critical Assessment of Protein Structure Prediction (CASP) experiment provides a double-blind study to evaluate improvements in protein structure prediction algorithms. We developed a protein structure prediction pipeline employing a three-stage approach, consisting of low-resolution topology search, high-resolution refinement, and molecular dynamics simulation to predict the tertiary structure of proteins from the primary structure alone or including distance restraints either from predicted residue-residue contacts, nuclear magnetic resonance (NMR) nuclear overhauser effect (NOE) experiments, or mass spectroscopy (MS) cross-linking (XL) data. The protein structure prediction pipeline was evaluated in the CASP11 experiment on twenty regular protein targets as well as thirty-three ‘assisted’ protein targets, which also had distance restraints available. Although the low-resolution topology search module was able to sample models with a global distance test total score (GDT_TS) value greater than 30% for twelve out of twenty proteins, frequently it was not possible to select the most accurate models for refinement, resulting in a general decay of model quality over the course of the prediction pipeline. In this study, we provide a detailed overall analysis, study one target protein in more detail as it travels through the protein structure prediction pipeline, and evaluate the impact of limited experimental data.  相似文献   

7.
Gao C  Stern HA 《Proteins》2007,68(1):67-75
We perform a systematic examination of the ability of several different high-resolution, atomic-detail scoring functions to discriminate native conformations of loops in membrane proteins from non-native but physically reasonable, or "decoy," conformations. Decoys constructed from changing a loop conformation while keeping the remainder of the protein fixed are a challenging test of energy function accuracy. Nevertheless, the best of the energy functions we examined recognized the native structure as lowest in energy around half the time, and consistently chose it as a low-energy structure. This suggests that the best of present energy functions, even without a representation of the lipid bilayer, are of sufficient accuracy to give reasonable confidence in predictions of membrane protein structure. We also constructed homology models for each structure, using other known structures in the same protein family as templates. Homology models were constructed using several scoring functions and modeling programs, but with a comparable sampling effort for each procedure. Our results indicate that the quality of sequence alignment is probably the most important factor in model accuracy for sequence identity from 20-40%; one can expect a reasonably accurate model for membrane proteins when sequence identity is greater than 30%, in agreement with previous studies. Most errors are localized in loop regions, which tend to be found outside the lipid bilayer. For the most discriminative energy functions, it appears that errors are most likely due to lack of sufficient sampling, although it should be stressed that present energy functions are still far from perfectly reliable.  相似文献   

8.
Protein structure prediction methods such as Rosetta search for the lowest energy conformation of the polypeptide chain. However, the experimentally observed native state is at a minimum of the free energy, rather than the energy. The neglect of the missing configurational entropy contribution to the free energy can be partially justified by the assumption that the entropies of alternative folded states, while very much less than unfolded states, are not too different from one another, and hence can be to a first approximation neglected when searching for the lowest free energy state. The shortcomings of current structure prediction methods may be due in part to the breakdown of this assumption. Particularly problematic are proteins with significant disordered regions which do not populate single low energy conformations even in the native state. We describe two approaches within the Rosetta structure modeling methodology for treating such regions. The first does not require advance knowledge of the regions likely to be disordered; instead these are identified by minimizing a simple free energy function used previously to model protein folding landscapes and transition states. In this model, residues can be either completely ordered or completely disordered; they are considered disordered if the gain in entropy outweighs the loss of favorable energetic interactions with the rest of the protein chain. The second approach requires identification in advance of the disordered regions either from sequence alone using for example the DISOPRED server or from experimental data such as NMR chemical shifts. During Rosetta structure prediction calculations the disordered regions make only unfavorable repulsive contributions to the total energy. We find that the second approach has greater practical utility and illustrate this with examples from de novo structure prediction, NMR structure calculation, and comparative modeling.  相似文献   

9.
Structural refinement of predicted models of biological macromolecules using atomistic or coarse‐grained molecular force fields having various degree of error is investigated. The goal of this analysis is to estimate what is the probability for designing an effective structural refinement based on computations of conformational energies using force field, and starting from a structure predicted from the sequence (using template‐based or template‐free modeling), and refining it to bring the structure into closer proximity to the native state. It is widely believed that it should be possible to develop such a successful structure refinement algorithm by applying an iterative procedure with stochastic sampling and appropriate energy function, which assesses the quality (correctness) of protein decoys. Here, an analysis of noise in an artificially introduced scoring function is investigated for a model of an ideal sampling scheme, where the underlying distribution of RMSDs is assumed to be Gaussian. Sampling of the conformational space is performed by random generation of RMSD values. We demonstrate that whenever the random noise in a force field exceeds some level, it is impossible to obtain reliable structural refinement. The magnitude of the noise, above which a structural refinement, on average is impossible, depends strongly on the quality of sampling scheme and a size of the protein. Finally, possible strategies to overcome the intrinsic limitations in the force fields for impacting the development of successful refinement algorithms are discussed. Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
We propose a novel method of calculation of free energy for coarse grained models of proteins by combining our newly developed multibody potentials with entropies computed from elastic network models of proteins. Multi-body potentials have been of much interest recently because they take into account three dimensional interactions related to residue packing and capture the cooperativity of these interactions in protein structures. Combining four-body non-sequential, four-body sequential and pairwise short range potentials with optimized weights for each term, our coarse-grained potential improved recognition of native structure among misfolded decoys, outperforming all other contact potentials for CASP8 decoy sets and performance comparable to the fully atomic empirical DFIRE potentials. By combing statistical contact potentials with entropies from elastic network models of the same structures we can compute free energy changes and improve coarse-grained modeling of protein structure and dynamics. The consideration of protein flexibility and dynamics should improve protein structure prediction and refinement of computational models. This work is the first to combine coarse-grained multibody potentials with an entropic model that takes into account contributions of the entire structure, investigating native-like decoy selection.  相似文献   

11.
Raval A  Piana S  Eastwood MP  Dror RO  Shaw DE 《Proteins》2012,80(8):2071-2079
Accurate computational prediction of protein structure represents a longstanding challenge in molecular biology and structure-based drug design. Although homology modeling techniques are widely used to produce low-resolution models, refining these models to high resolution has proven difficult. With long enough simulations and sufficiently accurate force fields, molecular dynamics (MD) simulations should in principle allow such refinement, but efforts to refine homology models using MD have for the most part yielded disappointing results. It has thus far been unclear whether MD-based refinement is limited primarily by accessible simulation timescales, force field accuracy, or both. Here, we examine MD as a technique for homology model refinement using all-atom simulations, each at least 100 μs long-more than 100 times longer than previous refinement simulations-and a physics-based force field that was recently shown to successfully fold a structurally diverse set of fast-folding proteins. In MD simulations of 24 proteins chosen from the refinement category of recent Critical Assessment of Structure Prediction (CASP) experiments, we find that in most cases, simulations initiated from homology models drift away from the native structure. Comparison with simulations initiated from the native structure suggests that force field accuracy is the primary factor limiting MD-based refinement. This problem can be mitigated to some extent by restricting sampling to the neighborhood of the initial model, leading to structural improvement that, while limited, is roughly comparable to the leading alternative methods.  相似文献   

12.
One of the major limitations of computational protein structure prediction is the deviation of predicted models from their experimentally derived true, native structures. The limitations often hinder the possibility of applying computational protein structure prediction methods in biochemical assignment and drug design that are very sensitive to structural details. Refinement of these low‐resolution predicted models to high‐resolution structures close to the native state, however, has proven to be extremely challenging. Thus, protein structure refinement remains a largely unsolved problem. Critical assessment of techniques for protein structure prediction (CASP) specifically indicated that most predictors participating in the refinement category still did not consistently improve model quality. Here, we propose a two‐step refinement protocol, called 3Drefine, to consistently bring the initial model closer to the native structure. The first step is based on optimization of hydrogen bonding (HB) network and the second step applies atomic‐level energy minimization on the optimized model using a composite physics and knowledge‐based force fields. The approach has been evaluated on the CASP benchmark data and it exhibits consistent improvement over the initial structure in both global and local structural quality measures. 3Drefine method is also computationally inexpensive, consuming only few minutes of CPU time to refine a protein of typical length (300 residues). 3Drefine web server is freely available at http://sysbio.rnet.missouri.edu/3Drefine/ . Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Comparative or homology modeling of a target protein based on sequence similarity to a protein with known structure is widely used to provide structural models of proteins. Depending on the target‐template similarity these model structures may contain regions of limited structural accuracy. In principle, molecular dynamics (MD) simulations can be used to refine protein model structures and also to model loop regions that connect structurally conserved regions but it is limited by the currently accessible simulation time scales. A recently developed biasing potential replica exchange (BP‐REMD) method was used to refine loops and complete decoy protein structures at atomic resolution including explicit solvent. In standard REMD simulations several replicas of a system are run in parallel at different temperatures allowing exchanges at preset time intervals. In a BP‐REMD simulation replicas are controlled by various levels of a biasing potential to reduce the energy barriers associated with peptide backbone dihedral transitions. The method requires much fewer replicas for efficient sampling compared with T‐REMD. Application of the approach to several protein loops indicated improved conformational sampling of backbone dihedral angle of loop residues compared to conventional MD simulations. BP‐REMD refinement simulations on several test cases starting from decoy structures deviating significantly from the native structure resulted in final structures in much closer agreement with experiment compared to conventional MD simulations. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Protein structure docking is the process in which the quaternary structure of a protein complex is predicted from individual tertiary structures of the protein subunits. Protein docking is typically performed in two main steps. The subunits are first docked while keeping them rigid to form the complex, which is then followed by structure refinement. Structure refinement is crucial for a practical use of computational protein docking models, as it is aimed for correcting conformations of interacting residues and atoms at the interface. Here, we benchmarked the performance of eight existing protein structure refinement methods in refinement of protein complex models. We show that the fraction of native contacts between subunits is by far the most straightforward metric to improve. However, backbone dependent metrics, based on the Root Mean Square Deviation proved more difficult to improve via refinement.  相似文献   

15.
The structural refinement of protein models is a challenging problem in protein structure prediction (Moult et al., Proteins 2003;53(Suppl 6):334-339). Most attempts to refine comparative models lead to degradation rather than improvement in model quality, so most current comparative modeling procedures omit the refinement step. However, it has been shown that even in the absence of alignment errors and using optimal templates, methods based on a single template have intrinsic limitations, and that refinement is needed to improve model accuracy. It is thought that failure of current methods originates on one hand from the inaccuracy of the effective free energy functions adopted, which do not represent properly the energetic balance in the native state, and on the other hand from the difficulty to sample the high dimensional and rugged free energy landscape of protein folding, in the search for the global minimum. Here, we address this second issue. We define the evolutionary and vibrational armonics subspace (EVA), a reduced sampling subspace that consists of a combination of evolutionarily favored directions, defined by the principal components of the structural variation within a homologous family, plus topologically favored directions, derived from the low frequency normal modes of the vibrational dynamics, up to 50 dimensions. This subspace is accurate enough so that the cores of most proteins can be represented within 1 A accuracy, and reduced enough so that Replica Exchange Monte Carlo (Hukushima and Nemoto, J Phys Soc Jpn 1996;65:1604-1608; Hukushima et al., Int J Mod Phys C: Phys Comput 1996;7:337-344; Mitsutake et al., J Chem Phys 2003;118:6664-6675; Mitsutake et al., J Chem Phys 2003;118:6676-6688) (REMC) can be applied. REMC is one of the best sampling methods currently available, but its applicability is restricted to spaces of small dimensionality. We show that the combination of the EVA subspace and REMC can essentially solve the optimization problem for backbone atoms in the reduced sampling subspace, even for rather rugged free energy landscapes. Applications and limitations of this methodology are finally discussed.  相似文献   

16.
Scoring model structure is an essential component of protein structure prediction that can affect the prediction accuracy tremendously. Users of protein structure prediction results also need to score models to select the best models for their application studies. In Critical Assessment of techniques for protein Structure Prediction (CASP), model accuracy estimation methods have been tested in a blind fashion by providing models submitted by the tertiary structure prediction servers for scoring. In CASP13, model accuracy estimation results were evaluated in terms of both global and local structure accuracy. Global structure accuracy estimation was evaluated by the quality of the models selected by the global structure scores and by the absolute estimates of the global scores. Residue-wise, local structure accuracy estimations were evaluated by three different measures. A new measure introduced in CASP13 evaluates the ability to predict inaccurately modeled regions that may be improved by refinement. An intensive comparative analysis on CASP13 and the previous CASPs revealed that the tertiary structure models generated by the CASP13 servers show very distinct features. Higher consensus toward models of higher global accuracy appeared even for free modeling targets, and many models of high global accuracy were not well optimized at the atomic level. This is related to the new technology in CASP13, deep learning for tertiary contact prediction. The tertiary model structures generated by deep learning pose a new challenge for EMA (estimation of model accuracy) method developers. Model accuracy estimation itself is also an area where deep learning can potentially have an impact, although current EMA methods have not fully explored that direction.  相似文献   

17.
De novo structure prediction can be defined as a search in conformational space under the guidance of an energy function. The most successful de novo structure prediction methods, such as Rosetta, assemble the fragments from known structures to reduce the search space. Therefore, the fragment quality is an important factor in structure prediction. In our study, a method is proposed to generate a new set of fragments from the lowest energy de novo models. These fragments were subsequently used to predict the next‐round of models. In a benchmark of 30 proteins, the new set of fragments showed better performance when used to predict de novo structures. The lowest energy model predicted using our method was closer to native structure than Rosetta for 22 proteins. Following a similar trend, the best model among top five lowest energy models predicted using our method was closer to native structure than Rosetta for 20 proteins. In addition, our experiment showed that the C‐alpha root mean square deviation was improved from 5.99 to 5.03 Å on average compared to Rosetta when the lowest energy models were picked as the best predicted models. Proteins 2014; 82:2240–2252. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Fatty acid synthase (FAS) is a 550 kDa homodimeric enzyme with multiple functional and structural domains. Normal mode analysis of a previously determined 19 A structure of FAS suggested that this enzyme might assume different conformational states with several distinct hinge movements. We have used a simultaneous multiple-model refinement method to search for the presence of the structural conformers from the electron images of FAS. We have demonstrated that the resulting models observed in the electron images are consistent with the predicted conformational changes. This technique demonstrates the potential of the combination of normal mode analysis with multiple model refinement to elucidate the multiple conformations of flexible proteins. Since each of these structures is based on a more homogeneous particle set, this technique has the potential, provided that sufficient references are used, to improve the resolution of the final reconstructions of single particles from electron cryomicroscopy.  相似文献   

19.
During CASP10 in summer 2012, we tested BCL::Fold for prediction of free modeling (FM) and template‐based modeling (TBM) targets. BCL::Fold assembles the tertiary structure of a protein from predicted secondary structure elements (SSEs) omitting more flexible loop regions early on. This approach enables the sampling of conformational space for larger proteins with more complex topologies. In preparation of CASP11, we analyzed the quality of CASP10 models throughout the prediction pipeline to understand BCL::Fold's ability to sample the native topology, identify native‐like models by scoring and/or clustering approaches, and our ability to add loop regions and side chains to initial SSE‐only models. The standout observation is that BCL::Fold sampled topologies with a GDT_TS score > 33% for 12 of 18 and with a topology score > 0.8 for 11 of 18 test cases de novo. Despite the sampling success of BCL::Fold, significant challenges still exist in clustering and loop generation stages of the pipeline. The clustering approach employed for model selection often failed to identify the most native‐like assembly of SSEs for further refinement and submission. It was also observed that for some β‐strand proteins model refinement failed as β‐strands were not properly aligned to form hydrogen bonds removing otherwise accurate models from the pool. Further, BCL::Fold samples frequently non‐natural topologies that require loop regions to pass through the center of the protein. Proteins 2015; 83:547–563. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
Lee SY  Zhang Y  Skolnick J 《Proteins》2006,63(3):451-456
The TASSER structure prediction algorithm is employed to investigate whether NMR structures can be moved closer to their corresponding X-ray counterparts by automatic refinement procedures. The benchmark protein dataset includes 61 nonhomologous proteins whose structures have been determined by both NMR and X-ray experiments. Interestingly, by starting from NMR structures, the majority (79%) of TASSER refined models show a structural shift toward their X-ray structures. On average, the TASSER refined models have a root-mean-square-deviation (RMSD) from the X-ray structure of 1.785 A (1.556 A) over the entire chain (aligned region), while the average RMSD between NMR and X-ray structures (RMSD(NMR_X-ray)) is 2.080 A (1.731 A). For all proteins having a RMSD(NMR_X-ray) >2 A, the TASSER refined structures show consistent improvement. However, for the 34 proteins with a RMSD(NMR_X-ray) <2 A, there are only 21 cases (60%) where the TASSER model is closer to the X-ray structure than NMR, which may be due to the inherent resolution of TASSER. We also compare the TASSER models with 12 NMR models in the RECOORD database that have been recalculated recently by Nederveen et al. from original NMR restraints using the newest molecular dynamics tools. In 8 of 12 cases, TASSER models show a smaller RMSD to X-ray structures; in 3 of 12 cases, where RMSD(NMR_X-ray) <1 A, RECOORD does better than TASSER. These results suggest that TASSER can be a useful tool to improve the quality of NMR structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号