首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mouse embryonic stem cells (mESCs) have the capability to undergo unlimited cell division and differentiate into derivatives of all three embryonic germ layers. These fundamental features enable mESCs to potentially be appropriate, efficient models for biological and medical research. Therefore, it is essential to produce high-performance mESCs. In the current study, we have produced mESCs from blastocysts that developed from fertilized oocytes of 2 (2-C57)-, 4 (4-C57)-, and 6 (6-C57)-month-old C57BL/6 mice. A comparison of isolated stem cells was done from the viewpoint of the efficiency of mESC derivation, self-renewal, and their differentiation capacity. All generated mESCs showed a similar expression of the molecular markers protein of pluripotency and AP activity. In the 3i medium, there was a significant decrease in undifferentiated marker genes expression in the 2-C57 cells compared with the other two groups ( P < 0.05) but developmental genes significantly increased in the 4-C57 and 6-C57 cells compared with the 2-C57 cells ( P < 0.05). The differentiation capacity into three germ layers through the embryoid body formation and percentage of cell lines with normal numbers of chromosomes reduced with increased maternal age. The highest DT and highest percentage of cells in the S phase belonged to 2-C57 cells. These data demonstrated that blastocysts which developed from fertilized oocytes of 2-, 4-, and 6-month-old C57BL/6 mice can generate pluripotent stem cells, and suggested that both the efficiency of mESC isolation and the behavior of these isolated mESCs including pluripotency, self-renewal, cell cycle, and DT changed with increasing maternal age.  相似文献   

2.
3.
Stem cells were derived from hatched blastocyst-stage mouse embryos of the C57BL/6 strain employing a knockout serum replacement instead of the traditional fetal calf serum, thereby avoiding the use of immunosurgery. Although fetal calf serum was not good for isolation of stem cells, a combination of this serum plus knockout serum increased the expansion rate of the cell culture. The derived cells were capable of maintaining an undifferentiated state during several passages, as demonstrated by the presence of alkaline phosphatase activity, stage-specific embryonic antigen 1 (SSEA-1), and octamer binding protein 4 (Oct-4). Suspension culture in bacteriological dishes gave better results than the hanging drop method for differentiation by means of embryoid body formation. Mouse embryonic stem cells showed spontaneous differentiation into derivatives of the 3 germ layers in culture media supplemented with fetal calf serum but not with knockout serum.  相似文献   

4.
Transgenic mice ubiquitously expressing enhanced green fluorescent protein (EGFP) are useful as marker lines in chimera experiments. We established a new embryonic stem (ES) cell line (named B6G-2) from a C57BL/6 blastocyst showing ubiquitous EGFP expression. Undifferentiated B6G-2 cells showed strong green fluorescence and mRNAs of pluripotent marker genes. B6G-2 cells were transferred into a C57BL/6 blastocyst to generate a germline chimera, the progeny of which inherited ubiquitous EGFP expression. Mice derived completely from B6G-2 cells were also developed from the ES cells; these were tetraploid chimeras. The established B6G-2 cells were shown to be pluripotent and to be capable of differentiating into cells of all lineages. Thus, the new ES cell line expressing EGFP ubiquitously is useful for basic research in the field of regenerative medicine. The B6G-2 cell line is freely available from the BioResource Center, RIKEN Tsukuba Institute (http://www.brc.riken.jp/lab/cell/english/).  相似文献   

5.
C57BL/6 is a well-characterized mouse strain that is used extensively for immunological and neurological research. The establishment of C57BL/6 ES cell lines has facilitated the study of gene-altered mice in a pure genetic background-however, relatively few such lines exist. Using a defined media supplement, knockout serum replacement (KSR) with knockout DMEM (KSR-KDMEM), we find that we can readily establish ES cell lines from blastocysts of C57BL/6J mice. Six lines were established, all of which were karyotypically normal and could be maintained in the undifferentiated state on mouse embryonic fibroblast (MEF) feeders. One line was further tested and found to be karyotypically stable and germline competent, both prior to manipulation and after gene targeting. For this cell line, efficiencies of cell cloning and chimera generation were greater when maintained in KSR-KDMEM. Our work suggests that the use of defined serum-free media may facilitate the generation of ES cells from inbred mouse strains.  相似文献   

6.
7.
Typically, embryonic stem (ES) cells derived from 129 mouse substrains are used to generate genetically altered mouse models. Resulting chimeric mice were then usually converted to a C57BL/6 background, which takes at least a year, even in the case of speed congenics. In recent years, embryonic stem cells have been derived from various mouse strains. However, 129 ES cells are still widely used partially due to poor germline transmission of ES cells derived from other strains. Availability of highly germline-competent C57BL/6 ES cells would enormously facilitate generation of genetically altered mice in a pure C57BL/6 genetic background by eliminating backcrossing time, and thus significantly reducing associated costs and efforts. Here, we describe establishment of a C57BL/6 ES cell line (LK1) and compare its efficacy to a widely used 129SvJ ES cell line (GSI-1) in generating germline chimeras. In contrast to earlier studies, our data shows that highly germline-competent C57BL/6 ES cell lines can be derived using a simple approach, and thus support broader use of C57BL/6 ES cell lines for genetically engineered mouse models. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
As a result of their pluripotency and potential for unlimited self‐renewal, human embryonic stem cells (hESCs) hold tremendous promise in regenerative medicine. An essential prerequisite for the widespread application of hESCs is the establishment of effective and efficient protocols for large‐scale cell culture, storage, and distribution. At laboratory scales hESCs are cultured adherent to tissue culture plates; these culture techniques are labor‐intensive and do not scale to high cell numbers. In an effort to facilitate larger scale hESC cultivation, we investigated the feasibility of culturing hESCs adherent to microcarriers. We modified the surface of Cytodex 3 microcarriers with either Matrigel or mouse embryonic fibroblasts (MEFs). hESC colonies were effectively expanded in a pluripotent, undifferentiated state on both Matrigel‐coated microcarriers and microcarriers seeded with a MEF monolayer. While the hESC expansion rate on MEF‐microcarriers was less than that on MEF‐plates, the doubling time of hESCs on Matrigel‐microcarriers was indistinguishable from that of hESCs expanded on Matrigel‐coated tissue culture plates. Standard hESC cryopreservation methodologies are plagued by poor viability and high differentiation rates upon thawing. Here, we demonstrate that cryopreservation of hESCs adherent to microcarriers in cryovials provides a higher recovery of undifferentiated cells than cryopreservation of cells in suspension. Together, these results suggest that microcarrier‐based stabilization and culture may facilitate hESC expansion and storage for research and therapeutic applications. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

9.
Human embryonic stem cells (hESCs) are candidates for many applications in the areas of regenerative medicine, tissue engineering, basic scientific research as well as pharmacology and toxicology. However, use of hESCs is limited by their sensitivity to freezing and thawing procedures. Hence, this emerging science needs new, reliable preservation methods for the long-term storage of large quantities of functional hESCs remaining pluripotent after post-thawing and culturing.Here, we present a highly efficient, surface based vitrification method for the cryopreservation of large numbers of adherent hESC colonies, using modified cell culture substrates. This technique results in much better post-thaw survival rate compared to cryopreservation in suspension and allows a quick and precise handling and storage of the cells, indicating low differentiation rates.  相似文献   

10.
11.
Despite a vast amount of different methods, protocols and cryoprotective agents (CPA), stem cells are often frozen using standard protocols that have been optimized for use with cell lines, rather than with stem cells. Relatively few comparative studies have been performed to assess the effects of cryopreservation methods on these stem cells. Dimethyl sulfoxide (DMSO) has been a key agent for the development of cryobiology and has been used universally for cryopreservation. However, the use of DMSO has been associated with in vitro and in vivo toxicity and has been shown to affect many cellular processes due to changes in DNA methylation and dysregulation of gene expression. Despite studies showing that DMSO may affect cell characteristics, DMSO remains the CPA of choice, both in a research setting and in the clinics. However, numerous alternatives to DMSO have been shown to hold promise for use as a CPA and include albumin, trehalose, sucrose, ethylene glycol, polyethylene glycol and many more. Here, we will discuss the use, advantages and disadvantages of these CPAs for cryopreservation of different types of stem cells, including hematopoietic stem cells, mesenchymal stromal/stem cells and induced pluripotent stem cells.  相似文献   

12.
目的:研究艾塞那肽(Ex-4)对成年小鼠脑室下区(SVZ)神经干细胞(NSCs)分化的影响及机制。方法:提取5周龄C57BL/6J小鼠SVZ的NSCs,100 nmol/L Ex-4处理分化14 d观察细胞形态,用免疫荧光检测巢蛋白(nestin)和胰高糖素样肽-1受体(GLP-1R)的表达。用shRNA敲低GLP-1R,将研究分为四组:对照组,Ex-4组,GLP-1R敲低组,GLP-1R敲低+Ex-4组。100 nmol/L Ex-4处理14 d后免疫荧光标记β-微管蛋白3(β-tublin III)和胶质纤维酸性蛋白(GFAP)并统计β-tublin III阳性细胞比例,Western blot检测环磷腺苷效应元件结合蛋白(CREB)的活化。为进一步研究Ex-4对MAPK和PI3K通路的影响,分别以丝裂原活化蛋白激酶(MAPK)抑制剂U0126 0.07 μmol/L预处理细胞30 min、磷脂酰肌醇-3激酶(PI3K)抑制剂LY294002 50 μmol/预处理细胞2 h,将研究分为: 对照组,Ex-4组,U0126组,U0126+Ex-4组,LY294002组,LY294002+Ex-4组,Western blot检测各组CREB的活化,各组实验独立重复三次。结果:成功从C57BL/6J小鼠SVZ提取NSCs,免疫荧光提示NSCs中nestin以及GLP-1R阳性。相对于对照组,Ex-4组分化为神经元的比例更高。GLP-1R敲低+Ex-4组中神经元比例与对照组基本一致(P<0.01),β-tublin III阳性的细胞显示出GLP-1R以及CREB活化阳性。Western blot显示Ex-4组中CREB显著活化,GLP-1R敲低+Ex-4组的CERB活化与对照组基本一致(P<0.01)。U0126+Ex-4组与Ex-4组CERB活化水平一致,LY294002+Ex-4组与对照组CERB活化水平一致(P<0.01)。 结论:Ex-4通过GLP-1R受体促进成年小鼠SVZ中NSCs分化为神经元,这一作用可能通过PI3K/ CREB通路来实现。  相似文献   

13.
BackgroundCell fusion is a phenomenon that is observed in various tissues in vivo, resulting in acquisition of physiological functions such as liver regeneration. Fused cells such as hybridomas have also been produced artificially in vitro. Furthermore, it has been reported that cellular reprogramming can be induced by cell fusion with stem cells.MethodsFused cells between mammalian fibroblasts and mouse embryonic stem cells were produced by electrofusion methods. The phenotypes of each cell lines were analyzed after purifying the fused cells.ResultsColonies which are morphologically similar to mouse embryonic stem cells were observed in fused cells of rabbit, bovine, and zebra fibroblasts. RT-PCR analysis revealed that specific pluripotent marker genes that were never expressed in each mammalian fibroblast were strongly induced in the fused cells, which indicated that fusion with mouse embryonic stem cells can trigger reprogramming and acquisition of pluripotency in various mammalian somatic cells.ConclusionsOur results can help elucidate the mechanism of pluripotency maintenance and the establishment of highly reprogrammed pluripotent stem cells in various mammalian species.  相似文献   

14.
15.
The aim of this study was to determine whether the number of passages affected the developmental pluripotency of embryonic stem (ES) cells as measured by the attainment of adult fertile mice derived from embryonic stem (ES) cell/tetraploid embryo complementation. Thirty-six newborns were produced by the aggregation of tetraploid embryos and hybrid ES cells after various numbers of passages. These newborns were entirely derived from ES cells as judged by microsatellite DNA, coat-color phenotype, and germline transmission. Although 15 survived to adulthood, 17 died of respiratory failure, and four were eaten by their foster mother. From the 15 mice that reached adulthood and that could reproduce, none arose from ES cells at passage level 15 or more. All 15 arose from cells at passages 3–11. Our results demonstrate that the number of passages affects the developmental pluripotency of ES cells. This work was supported by the National Natural Science Foundation of China (grant no. 30571336) and the President Foundation of the Agricultural University of Hebei.  相似文献   

16.
17.
18.
19.
Pluripotency of embryonic stem cells (ESCs) is maintained by the balancing of several signaling pathways, such as Wnt, BMP, and FGF, and differentiation of ESCs into a specific lineage is induced by the disruption of this balance. Sulfated glycans are considered to play important roles in lineage choice of ESC differentiation by regulating several signalings. We examined whether reduction of sulfation by treatment with the chemical inhibitor chlorate can affect differentiation of ESCs. Chlorate treatment inhibited mesodermal differentiation of mouse ESCs, and then induced ectodermal differentiation and accelerated further neural differentiation. This could be explained by the finding that several signaling pathways involved in the induction of mesodermal differentiation (Wnt, BMP, and FGF) or inhibition of neural differentiation (Wnt and BMP) were inhibited in chlorate-treated embryoid bodies, presumably due to reduced sulfation on heparan sulfate and chondroitin sulfate. Furthermore, neural differentiation of human induced pluripotent stem cells (hiPSCs) was also accelerated by chlorate treatment. We propose that chlorate could be used to induce efficient neural differentiation of hiPSCs instead of specific signaling inhibitors, such as Noggin.  相似文献   

20.
C57BL/6 mouse is the most standard strain in mouse genetics. The strain does, however, have several disadvantages; one being the difficulty in establishing embryonic stem (ES) cells. No reliable C57BL/6 ES cell line is widely available for creating mutant mice through gene targeting. It also greatly favors mouse genetics if one can routinely make multiple mutations by stably culturing germline‐competent C57BL/6 ES cells or if one can routinely establish ES cells from C57BL/6‐derived mutant mice to make multiple mutations. Recently, an ES culture method with three inhibitors (3i: SU5402 for FGFR, PD184352 for ERK, and CHIR99021 for GSK3) has been reported. Here we show that this 3i method is extremely instrumental in establishing and culturing germline‐competent ES cells in the C57BL/6N strain. genesis 48:317–327, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号