首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The analysis of inter-residue interactions in protein structures provides considerable insight to understand their folding and stability. We have previously analyzed the role of medium- and long-range interactions in the folding of globular proteins. In this work, we study the distinct role of such interactions in the three-dimensional structures of membrane proteins. We observed a higher number of long-range contacts in the termini of transmembrane helical (TMH) segments, implying their role in the stabilization of helix-helix interactions. The transmembrane strand (TMS) proteins are having appreciably higher long-range contacts than that in all-beta class of globular proteins, indicating closer packing of the strands in TMS proteins. The residues in membrane spanning segments of TMH proteins have 1.3 times higher medium-range contacts than long-range contacts whereas that of TMS proteins have 14 times higher long-range contacts than medium-range contacts. Residue-wise analysis indicates that in TMH proteins, the residues Cys, Glu, Gly, Pro, Gln, Ser and Tyr have higher long-range contacts than medium-range contacts in contrast with all-alpha class of globular proteins. The charged residue pairs have higher medium-range contacts in all-alpha proteins, whereas hydrophobic residue pairs are dominant in TMH proteins. The information on the preference of residue pairs to form medium-range contacts has been successfully used to discriminate the TMH proteins from all-alpha proteins. The statistical significance of the results obtained from the present study has been verified using randomized structures of TMH and TMS protein templates.  相似文献   

2.
The sarco(endo)plasmic reticulum calcium ATPase (SERCA) and its regulatory partner phospholamban (PLN) are essential for myocardial contractility. Arg(9) → Cys (R9C) and Arg(14) deletion (R14del) mutations in PLN are associated with lethal dilated cardiomyopathy in humans. To better understand these mutations, we made a series of amino acid substitutions in the cytoplasmic domain of PLN and tested their ability to inhibit SERCA. R9C is a complete loss-of-function mutant of PLN, whereas R14del is a mild loss-of-function mutant. When combined with wild-type PLN to simulate heterozygous conditions, the mutants had a dominant negative effect on SERCA function. A series of targeted mutations in this region of the PLN cytoplasmic domain ((8)TRSAIRR(14)) demonstrated the importance of hydrophobic balance in proper PLN regulation of SERCA. We found that Arg(9) → Leu and Thr(8) → Cys substitutions mimicked the behavior of the R9C mutant, and an Arg(14) → Ala substitution mimicked the behavior of the R14del mutant. The results reveal that the change in hydrophobicity resulting from the R9C and R14del mutations is sufficient to explain the loss of function and persistent interaction with SERCA. Hydrophobic imbalance in the cytoplasmic domain of PLN appears to be a predictor for the development and progression of dilated cardiomyopathy.  相似文献   

3.
Discriminating outer membrane (OM) proteins from globular proteins is an important task. The structural analysis of β-strands dominating globular (all-β) proteins and OM proteins provides useful insight to distinguish between them. In this work, we analyze the characteristic features of the 20 amino acid residues in all-β and OM proteins. We set up numerical indices for several properties of amino acid residues, such as, conformational parameters, surrounding hydrophobicity, accessible surface area and reduction in accessibility, and inter-residue contacts. We found that all the aromatic residues prefer to be in β-strands of both globular and OM proteins. The surrounding hydrophobicity of aromatic and non-polar amino acid residues in globular proteins is significantly higher than that of OM proteins. The residues Trp, Arg, Phe and Gln show a remarkable difference of reduction in accessibility between all-β globular (βG) and OM proteins. The positively charged residues, Lys and Arg in the membrane part of OM proteins have more number of contacts than globular proteins. Further, the behavior of the 20 amino acid residues in β-strand segments of globular and OM proteins have been discussed. The parameters developed in this work can be used for identifying transmembrane β-strands in OM proteins and for discriminating βG proteins from OM proteins.  相似文献   

4.
Equilibrative nucleoside transporters encompass two conserved, charged residues that occur within predicted transmembrane domain 8. To assess the role of these "signature" residues in transporter function, the Asp389 and Arg393 residues within the LdNT2 nucleoside transporter from Leishmania donovani were mutated and the resultant phenotypes evaluated after transfection into Delta ldnt2 parasites. Whereas an R393K mutant retained transporter activity similar to that of wild type LdNT2, the R393L, D389E, and D389N mutations resulted in dramatic losses of transport capability. Tagging the wild type and mutant ldnt2 proteins with green fluorescent protein demonstrated that the D389N and D389E mutants targeted properly to the parasite cell surface and flagellum, whereas the expression of R393L at the cell surface was profoundly compromised. To test whether Asp389 and Arg393 interact, a series of mutants was generated, D389R/R393R, D389D/R393D, and D389R/R393D, within the green fluorescent protein-tagged LdNT2 construct. Although all of these ldnt2 mutants were transport-deficient, D389R/R393D localized properly to the plasma membrane, while neither D389R/R393R nor D389D/R393D could be detected. Moreover, a transport-incompetent D389N/R393N double ldnt2 mutant also localized to the parasite membrane, whereas a D389L/R393L ldnt2 mutant did not, suggesting that an interaction between residues 389 and 393 may be involved in LdNT2 membrane targeting. These studies establish genetically that Asp389 is critical for optimal transporter function and that a positively charged or polar residue at Arg393 is essential for proper expression of LdNT2 at the plasma membrane.  相似文献   

5.
Recent advances in determination of the high-resolution structure of membrane proteins now enable analysis of the main features of amino acids in transmembrane (TM) segments in comparison with amino acids in water-soluble helices. In this work, we conducted a large-scale analysis of the prevalent locations of amino acids by using a data set of 170 structures of integral membrane proteins obtained from the MPtopo database and 930 structures of water-soluble helical proteins obtained from the protein data bank. Large hydrophobic amino acids (Leu, Val, Ile, and Phe) plus Gly were clearly prevalent in TM helices whereas polar amino acids (Glu, Lys, Asp, Arg, and Gln) were less frequent in this type of helix. The distribution of amino acids along TM helices was also examined. As expected, hydrophobic and slightly polar amino acids are commonly found in the hydrophobic core of the membrane whereas aromatic (Trp and Tyr), Pro, and the hydrophilic amino acids (Asn, His, and Gln) occur more frequently in the interface regions. Charged amino acids are also statistically prevalent outside the hydrophobic core of the membrane, and whereas acidic amino acids are frequently found at both cytoplasmic and extra-cytoplasmic interfaces, basic amino acids cluster at the cytoplasmic interface. These results strongly support the experimentally demonstrated biased distribution of positively charged amino acids (that is, the so-called the positive-inside rule) with structural data.  相似文献   

6.
Integral membrane proteins from a wide variety of sources conform to a "positive-inside rule," with many more positively charged amino acids in their cytoplasmic as compared to extracytoplasmic domains. A growing body of experimental work also points to positively charged residues in regions flanking the apolar transmembrane segments as being the main topological determinants. In this paper, we report a systematic comparison of the effects of positively (Arg, Lys, His) as well as negatively (Asp, Glu) charged residues on the membrane topology of a model Escherichia coli inner membrane protein. Our results show that positive charge is indeed the major factor determining the transmembrane topology, with Arg and Lys being of nearly equal efficiency. His, although normally a very weak topological determinant, can be potentiated by a lowering of the cytoplasmic pH. Asp and Glu affect the topology to similar extents and only when present in very high numbers.  相似文献   

7.
Utilizing site-directed mutagenesis in combination with chemical modification of mutated residues, we have studied the roles of cysteine and arginine residues in the mitochondrial citrate transport protein (CTP) from Saccharomyces cerevisiae. Our strategy consisted of the sequential replacement of each of the four endogenous cysteine residues with Ser or in the case of Cys(73) with Val. Wild-type and mutated forms of the CTP were overexpressed in Escherichia coli, purified, and reconstituted in phospholipid vesicles. During the sequential replacement of each Cys, the effects of both hydrophilic and hydrophobic sulfhydryl reagents were examined. The data indicate that Cys(73) and Cys(256) are primarily responsible for inhibition of the wild-type CTP by hydrophilic sulfhydryl reagents. Experiments conducted with triple Cys replacement mutants (i.e. Cys(192) being the only remaining Cys) indicated that sulfhydryl reagents no longer inhibit but in fact stimulate CTP function 2-3-fold. Following the simultaneous replacement of all four endogenous Cys, the functional properties of the resulting Cys-less CTP were shown to be quite similar to those of the wild-type protein. Finally, utilizing the Cys-less CTP as a template, the roles of Arg(181) and Arg(189), two positively charged residues located within transmembrane domain IV, in CTP function were examined. Replacement of either residue with a Cys abolishes function, whereas replacement with a Lys or a Cys that is subsequently covalently modified with (2-aminoethyl)methanethiosulfonate hydrobromide, a reagent that restores positive charge at this site, supports CTP function. The results clearly show that positive charge at these two positions is essential for CTP function, although the chemistry of the guanidinium residue is not. Finally, these studies: (i) definitely demonstrate that Cys residues do not play an important role in the mechanism of the CTP; (ii) prove the utility of the Cys-less CTP for studying structure/function relationships within this metabolically important protein; and (iii) have led to the hypothesis that the polar face of alpha-helical transmembrane domain IV, within which Arg(181), Arg(189), and Cys(192) are located, constitutes an essential portion of the citrate translocation pathway through the membrane.  相似文献   

8.
Cation-pi interactions play an important role to the stability of protein structures. In this work, we analyze the influence of cation-pi interactions in three-dimensional structures of membrane proteins. We found that transmembrane strand (TMS) proteins have more number of cation-pi interactions than transmembrane helical (TMH) proteins. In TMH proteins, both the positively charged residues Lys and Arg equally experience favorable cation-pi interactions whereas in TMS proteins, Arg is more likely than Lys to be in such interactions. There is no relationship between number of cation-pi interactions and number of residues in TMH proteins whereas a good correlation was observed in TMS proteins. The average cation-pi interaction energy for TMH proteins is -16 kcal/mol and that for TMS proteins is -27 kcal/mol. The pair-wise cation-pi interaction energy between aromatic and positively charged residues showed that Lys-Trp energy is stronger in TMS proteins than TMH proteins; Arg-Phe, Arg-Tyr and Lys-Phe have higher energy in TMH proteins than TMS proteins. The decomposition of energies into electrostatic and van der Waals revealed that the contribution from electrostatic energy is twice as that from van der Waals energy in both TMH and TMS proteins. The results obtained in the present study would be helpful to understand the contribution of cation-pi interactions to the stability of membrane proteins.  相似文献   

9.
δ-Helices are marginally hydrophobic α-helical segments in soluble proteins that exhibit certain sequence characteristics of transmembrane (TM) helices [Cunningham, F., Rath, A., Johnson, R. M. & Deber, C. M. (2009). Distinctions between hydrophobic helices in globular proteins and TM segments as factors in protein sorting. J. Biol. Chem., 284, 5395-402]. In order to better understand the difference between δ-helices and TM helices, we have studied the insertion of five TM-like δ-helices into dog pancreas microsomal membranes. Using model constructs in which an isolated δ-helix is engineered into a bona fide membrane protein, we find that, for two δ-helices originating from secreted proteins, at least three single-nucleotide mutations are necessary to obtain efficient membrane insertion, whereas one mutation is sufficient in a δ-helix from the cytosolic protein P450BM-3. We further find that only when the entire upstream region of the mutated δ-helix in the intact cytochrome P450BM-3 is deleted does a small fraction of the truncated protein insert into microsomes. Our results suggest that upstream portions of the polypeptide, as well as embedded charged residues, protect δ-helices in globular proteins from being recognized by the signal recognition particle-Sec61 endoplasmic-reticulum-targeting machinery and that δ-helices in secreted proteins are mutationally more distant from TM helices than δ-helices in cytosolic proteins.  相似文献   

10.
We have investigated the features of single-span model membrane proteins based upon leader peptidase that determines whether the proteins insert by a YidC/Sec-independent, YidC-only, or YidC/Sec mechanism. We find that a protein with a highly hydrophobic transmembrane segment that inserts into the membrane by a YidC/Sec-independent mechanism becomes YidC-dependent if negatively charged residues are inserted into the translocated periplasmic domain or if the hydrophobicity of the transmembrane segment is reduced by substituting polar residues for nonpolar ones. This suggests that charged residues in the translocated domain and the hydrophobicity within the transmembrane segment are important determinants of the insertion pathway. Strikingly, the addition of a positively charged residue to either the translocated region or the transmembrane region can switch the insertion requirements such that insertion requires both YidC and SecYEG. To test conclusions from the model protein studies, we confirmed that a positively charged residue is a SecYEG determinant for the endogenous proteins ATP synthase subunits a and b and the TatC subunit of the Tat translocase. These findings provide deeper insights into how pathways are selected for the insertion of proteins into the Escherichia coli inner membrane.  相似文献   

11.
The human C3a anaphylatoxin receptor (C3aR) is a G protein-coupled receptor (GPCR) composed of seven transmembrane alpha-helices connected by hydrophilic loops. Previous studies of chimeric C3aR/C5aR and loop deletions in C3aR demonstrated that the large extracellular loop2 plays an important role in noneffector ligand binding; however, the effector binding site for C3a has not been identified. In this study, selected charged residues in the transmembrane regions of C3aR were replaced by Ala using site-directed mutagenesis, and mutant receptors were stably expressed in the RBL-2H3 cell line. Ligand binding studies demonstrated that R161A (helix IV), R340A (helix V), and D417A (helix VII) showed no binding activity, although full expression of these receptors was established by flow cytometric analysis. C3a induced very weak intracellular calcium flux in cells expressing these three mutant receptors. H81A (helix II) and K96A (helix III) showed decreased ligand binding activity. The calcium flux induced by C3a in H81A and K96A cells was also consistently reduced. These findings suggest that the charged transmembrane residues Arg161, Arg340, and Asp417 in C3aR are essential for ligand effector binding and/or signal coupling, and that residues His81 and Lys96 may contribute less directly to the overall free energy of ligand binding. These transmembrane residues in C3aR identify specific molecular contacts for ligand interactions that account for C3a-induced receptor activation.  相似文献   

12.
For the past 50?years, the Ramachandran map has been used effectively to study the protein structure and folding. However, though extensive analysis has been done on dihedral angle preferences of residues in globular proteins, related studies and reports of membrane proteins are limited. It is of interest to explore the conformational preferences of residues in transmembrane regions of membrane proteins which are involved in several important and diverse biological processes. Hence, in the present work, a systematic comparative computational analysis has been made on dihedral angle preferences of alanine and glycine in alpha and beta transmembrane regions (the two major classes of transmembrane proteins) with the aid of the Ramachandran map. Further, the conformational preferences of residues in transmembrane regions were compared with the non-transmembrane regions. We have extracted cation-pi interacting residues present in transmembrane regions and explored the dihedral angle preferences. From our observations, we reveal the higher percentage of occurrences of glycine in alpha and beta transmembrane regions than other hydrophobic residues. Further, we noted a clear shift in ψ-angle preferences of glycine residues from negative bins in alpha transmembrane regions to positive bins in beta transmembrane regions. Also, cation-pi interacting residues in beta transmembrane regions avoid preferring ψ-angles in the range of ?59° to ?30°. In this article, we insist that the studies on preferences of dihedral angles in transmembrane regions, thorough understanding of structure and folding of transmembrane proteins, can lead to modeling of novel transmembrane regions towards designing membrane proteins.  相似文献   

13.
Pulvomycin-resistant mutants of E.coli elongation factor Tu.   总被引:1,自引:1,他引:0       下载免费PDF全文
This paper reports the generation of Escherichia coli mutants resistant to pulvomycin. Together with targeted mutagenesis of the tufA gene, conditions were found to overcome membrane impermeability, thereby allowing the selection of three mutants harbouring elongation factor (EF)-Tu Arg230-->Cys, Arg333-->Cys or Thr334-->Ala which confer pulvomycin resistance. These mutations are clustered in the three-domain junction interface of the crystal structure of the GTP form of Thermus thermophilus EF-Tu. This result shares similarities with kirromycin resistance; kirromycin-resistant mutations cluster in the domain 1-3 interface. Since both interface regions are involved in the EF-Tu switch mechanism, we propose that pulvomycin and kirromycin both act by specifically disturbing the allosteric changes required for the switch from EF-Tu-GTP to EF-Tu-GDP. The three-domain junction changes dramatically in the switch to EF-Tu.GDP; in EF-Tu.GDP this region forms an open hole. Structural analysis of the mutation positions in EF-Tu.GTP indicated that the two most highly resistant mutants, R230C and R333C, are part of an electrostatic network involving numerous residues. All three mutations appear to destabilize the EF-Tu.GTP conformation. Genetic and protein characterizations show that sensitivity to pulvomycin is dominant over resistance. This appears to contradict the currently accepted model of protein synthesis inhibition by pulvomycin.  相似文献   

14.
Intrinsically disordered regions (IDRs) of proteins are often characterized by a high fraction of charged residues, but differ in their overall net charge and in the organization of the charged residues. The function-encoding information stored via IDR charge composition and organization remains elusive. Here, we aim to decipher the sequence–function relationship in IDRs by presenting a comprehensive bioinformatic analysis of the charge properties of IDRs in the human, mouse, and yeast proteomes. About 50% of the proteins comprise at least a single IDR, which is either positively or negatively charged. Highly negatively charged IDRs are longer and possess greater net charge per residue compared with highly positively charged IDRs. A striking difference between positively and negatively charged IDRs is the characteristics of the repeated units, specifically, of consecutive Lys or Arg residues (K/R repeats) and Asp or Glu (D/E repeats) residues. D/E repeats are found to be about five times longer than K/R repeats, with the longest found containing 49 residues. Long stretches of consecutive D and E are found to be more prevalent in nucleic acid-related proteins. They are less common in prokaryotes, and in eukaryotes their abundance increases with genome size. The functional role of D/E repeats and the profound differences between them and K/R repeats are discussed.  相似文献   

15.
The tetracycline resistance proteins (TetA) of gram-negative bacteria are secondary active transport proteins that contain buried charged amino acids that are important for tetracycline transport. Earlier studies have shown that insertion of TetA proteins into the cytoplasmic membrane is mediated by helical hairpin pairs of transmembrane (TM) segments. However, whether helical hairpins direct spontaneous insertion of TetA or are required instead for its interaction with the cellular secretion (Sec) machinery is unknown. To gain insight into how TetA proteins are inserted into the membrane, we have investigated how tolerant the class C TetA protein encoded by plasmid pBR322 is to placement of charged residues in TM segments. The results show that the great majority of charge substitutions do not interfere with insertion even when placed at locations that cannot be shielded internally within helical hairpins. The only mutations that frequently block insertion are proline substitutions, which may interfere with helical hairpin folding. The ability of TetA to broadly tolerate charge substitutions indicates that the Sec machinery assists in its insertion into the membrane. The results also demonstrate that it is feasible to engineer charged residues into the interior of TetA proteins for the purpose of structure-function analysis.  相似文献   

16.
Phenylalanine hydroxylase (PAH) is a multidomain tetrameric enzyme that displays positive cooperative substrate binding. This cooperative response is believed to be of physiological significance as a mechanism that controls L-Phe homeostasis in blood. The substrate induces an activating conformational change in the enzyme affecting the secondary, tertiary, and quaternary structures. Chemical modification and substitution with a negatively charged residue of Cys237 in human PAH (hPAH) also result in activation of the enzyme. As seen in the modeled structure of full-length hPAH, Cys237 is located in the catalytic domain close to residues in the oligomerization and regulatory domains of an adjacent subunit in the dimer, notably to Arg68. This residue is located in a prominent loop (68-75), which also has contacts with the dimerization motif from the same subunit. To investigate further the involvement of Cys237 and Arg68 in the activation of the enzyme, we have prepared mutants of hPAH at these positions, with substitutions of different charge and size. The mutations C237D, R68A, and C237A cause an increase of the basal activity and affinity for L-Phe, while the mutation C237R results in reduced affinity for the substrate and elimination of the positive cooperativity. The conformational changes induced by the mutations were studied by far-UV circular dichroism, fluorescence spectroscopy, and molecular dynamics simulations. All together, our results indicate that the activating mutations induce a series of conformational changes including both the displacement of the inhibitory N-terminal sequence (residues 19-33) that covers the active site and the domain movements around the hinge region Arg111-Thr117, in addition to the rearrangement of the loop 68-75. The same conformational changes appear to be involved in the activation of PAH induced by L-Phe.  相似文献   

17.
The small (116 amino acids) inner membrane protein MerT encoded by the transposon Tn501 has been overexpressed under the control of the bacteriophage T7 expression system. Random mutants of MerT were made and screened for loss of mercuric ion hypersensitivity. Several mutantmerT genes were selected and sequenced: Cys24Arg and Cys25Tyr mutations abolish mercury resistance, as do charge-substitution mutations in the first predicted transmembrane helix (Glyl4Arg, Glyl5Arg, Gly27Arg, Ala18Asp), and the termination mutations Trp66Ter and Cys82Ter.  相似文献   

18.
We have carried out detailed statistical analyses of integral membrane proteins of the helix-bundle class from eubacterial, archaean, and eukaryotic organisms for which genome-wide sequence data are available. Twenty to 30% of all ORFs are predicted to encode membrane proteins, with the larger genomes containing a higher fraction than the smaller ones. Although there is a general tendency that proteins with a smaller number of transmembrane segments are more prevalent than those with many, uni-cellular organisms appear to prefer proteins with 6 and 12 transmembrane segments, whereas Caenorhabditis elegans and Homo sapiens have a slight preference for proteins with seven transmembrane segments. In all organisms, there is a tendency that membrane proteins either have many transmembrane segments with short connecting loops or few transmembrane segments with large extra-membraneous domains. Membrane proteins from all organisms studied, except possibly the archaeon Methanococcus jannaschii, follow the so-called "positive-inside" rule; i.e., they tend to have a higher frequency of positively charged residues in cytoplasmic than in extra-cytoplasmic segments.  相似文献   

19.
The small (116 amino acids) inner membrane protein MerT encoded by the transposon Tn501 has been overexpressed under the control of the bacteriophage T7 expression system. Random mutants of MerT were made and screened for loss of mercuric ion hypersensitivity. Several mutantmerT genes were selected and sequenced: Cys24Arg and Cys25Tyr mutations abolish mercury resistance, as do charge-substitution mutations in the first predicted transmembrane helix (Glyl4Arg, Glyl5Arg, Gly27Arg, Ala18Asp), and the termination mutations Trp66Ter and Cys82Ter.  相似文献   

20.
A total of 20%-25% of the proteins in a typical genome are helical membrane proteins. The transmembrane regions of these proteins have markedly different properties when compared with globular proteins. This presents a problem when homology search algorithms optimized for globular proteins are applied to membrane proteins. Here we present modifications of the standard Smith-Waterman and profile search algorithms that significantly improve the detection of related membrane proteins. The improvement is based on the inclusion of information about predicted transmembrane segments in the alignment algorithm. This is done by simply increasing the alignment score if two residues predicted to belong to transmembrane segments are aligned with each other. Benchmarking over a test set of G-protein-coupled receptor sequences shows that the number of false positives is significantly reduced in this way, both when closely related and distantly related proteins are searched for.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号