首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-small-cell lung cancer (NSCLC) is an extremely debilitating respiratory malignancy. However, the pathogenesis of NSCLC has not been fully clarified. The main objective of our study was to identify potential microRNAs (miRNAs) and their regulatory mechanism in NSCLC. Using a systematic review, two NSCLC-associated miRNA data sets (GSE102286 and GSE56036) were obtained from Gene Expression Omnibus, and the differentially expressed miRNAs (DE-miRNAs) were accessed by GEO2R. Survival analysis of candidate DE-miRNAs was conducted using the Kaplan-Meier plotter database. To further illustrate the roles of DE-miRNAs in NSCLC, their potential target genes were predicted by miRNet and were annotated by the Database for Annotation, Visualization and Integrated Discovery (DAVID) program. Moreover, the protein-protein interaction (PPI) and miRNA-hub gene regulatory network were established using the STRING database and Cytoscape software. The function of DE-miRNAs in NSCLC cells was evaluated by transwell assay. Compared with normal tissues, a total of eight DE-miRNAs was commonly changed in two data sets. The survival analysis showed that six miRNAs (miR-21-5p, miR-31-5p, miR-708-5p, miR-30a-5p, miR-451a, and miR-126-3p) were significantly correlated with overall survival. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that target genes of upregulated miRNAs were enriched in pathways in cancer, microRNAs in cancer and proteoglycans in cancer, while the target genes of downregulated miRNAs were mainly associated with pathways in cancer, the PI3K-Akt signaling pathway and HTLV-I infection. Based on the miRNA-hub gene network and expression analysis, PTEN, EGFR, STAT3, RHOA, VEGFA, TP53, CTNNB1, and KRAS were identified as potential target genes. Furthermore, all six miRNAs exhibited significant effects on NSCLC cell invasion. These findings indicate that six DE-miRNAs and their target genes may play important roles in the pathogenesis of NSCLC, which will provide novel information for NSCLC treatments.  相似文献   

2.
A comparative cDNA microarray analysis was carried out using human gastric cancer cells and their derivative cells made resistant to 5-fluorouracil. Three genes, SRP72, DNA primase, and caspase-6, were identified that were transiently induced by 5-fluorouracil and also overexpressed in 5-fluorouracil-resistant gastric cancer cells.  相似文献   

3.
Lung cancer (LC) is the most common type of cancer and the second cause of death worldwide in men and women after cardiovascular diseases. Non-small-cell lung cancer (NSCLC) is the most frequent type of LC occurring in 85% of cases. Developing new methods for early detection of NSCLC could substantially increase the chances of survival and, therefore, is an urgent task for current research. Nowadays, explosion in nanotechnology offers unprecedented opportunities for therapeutics and diagnosis applications. In this context, exploiting the bio-nano-interactions between nanoparticles (NPs) and biological fluids is an emerging field of research. Upon contact with biofluids, NPs are covered by a biomolecular coating referred to as “biomolecular corona” (BC). In this study, we exploited BC for discriminating between NSCLC patients and healthy volunteers. Blood samples from 10 NSCLC patients and 5 subjects without malignancy were allowed to interact with negatively charged lipid NPs, leading to the formation of a BC at the NP surface. After isolation, BCs were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We found that the BCs of NSCLC patients was significantly different from that of healthy individuals. Statistical analysis of SDS-PAGE results allowed discriminating between NSCLC cancer patients and healthy subjects with 80% specificity, 80% sensitivity and a total discriminate correctness rate of 80%. While the results of the present investigation cannot be conclusive due to the small size of the data set, we have shown that exploitation of the BC is a promising approach for the early diagnosis of NSCLC.  相似文献   

4.
The human absent in melanoma 2 (AIM2) is considered as a DNA recognizer. AIM2 has been described as a tumor suppressor gene in the early years. But recent studies suggested that it functions as an oncogene in several cancers. However, its roles in non-small-cell lung cancer (NSCLC) remain unclear. Here we reported that AIM2 highly expressed in NSCLC cells and exhibited a tumor-promoting property both in vitro and in vivo. Besides, AIM2 short hairpin RNA (shRNA)-mediated suppression of cell proliferation was triggered by the accumulation of cells at the G2/M phase. Knockdown of AIM2 reduced the inflammasome formation, while overexpression of AIM2 or stimulation by poly(dA:dT) induced the inflammasome formation. Interestingly, blockade of the inflammasome by caspase-1 inhibitor VX-765 or ASC small interfering RNA (siRNA) abolished the effects brought by AIM2 shRNA and AIM2 plasmid. In summary, our results revealed that AIM2 functioned as an oncogene in NSCLC in an inflammasome-dependent way.  相似文献   

5.
The prognostic value of the preoperative albumin-to-globulin ratio (AGR) has not been investigated in non-small-cell lung cancer (NSCLC). Therefore, we aimed to assess the clinical applicability of the preoperative AGR to predict the prognosis in patients with NSCLC. We retrospectively enrolled 545 patients with stage I/II/III NSCLC who underwent surgery at our institution. The cutoff value for preoperative AGR was calculated by using a receiver operating characteristic curve analysis. A low AGR was associated with several clinicopathological variables related to tumor progression. In the multivariate analyses, the preoperative AGR was identified as an independent prognostic factor for disease-free survival (DFS; P = 0.003) and overall survival (OS; P = 0.005). For patients with stage II and III with a preoperative AGR ≤ 1.43, the surgery plus chemotherapy group had a significantly longer DFS and OS than the surgery alone group (P = 0.002 and P = 0.001, respectively); however, a significant difference in DFS and OS between these two groups was not observed in patients with stage II and III with an AGR > 1.43 (P = 0.808 and P = 0.842, respectively). The preoperative AGR is an independent, significant predictor of DFS and OS in patients with NSCLC. Our results also demonstrate that the preoperative AGR might be a predictive marker of the therapeutic effect of postoperative chemotherapy in patients with stage II and III NSCLC.  相似文献   

6.
Non-small-cell lung cancer (NSCLC) is a heterogeneous disease with diverse pathological features. Clinical proteomics allows the discovery of molecular markers and new therapeutic targets for this most prevalent type of lung cancer. Some of them may be used to detect early lung cancer, while others may serve as predictive markers of resistance to different therapies. Therapeutic targets and prognostic markers in NSCLC have also been discovered. These proteomics biomarkers may help to pair the individual NSCLC patient with the best treatment option. Despite the fact that implementation of these biomarkers in the clinic appears to be scarce, the recently launched Precision Medicine Initiative may encourage their translation into clinical practice.  相似文献   

7.
A series of structurally unique second mitochondria-derived activator of caspases (Smacs) that act as antagonists of the inhibitor of apoptosis proteins (IAPs) directly have been discovered. They play crucial roles in mitochondrial apoptosis pathways and promote chemotherapy-induced apoptosis. In this study, we constructed a eukaryotic expression vector pcDNA3.1/Smac and transfected it into A549 human lung cancer cells. Then we analyzed the cell invasive and cloning ability, as well as cell apoptosis induced by Taxol. The results showed that over-expressed Smac significantly inhibited A549 cell invasive and cloning ability and promoted apoptosis following Taxol treatment. This finding provides a potential approach for the biological therapy of lung cancer.  相似文献   

8.
Aberrant serum N-glycan profiles have been observed in multiple cancers including non-small-cell lung cancer (NSCLC), yet the potential of N-glycans in the early diagnosis of NSCLC remains to be determined. In this study, serum N-glycan profiles of 275 NSCLC patients and 309 healthy controls were characterized by MALDI-TOF-MS. The levels of serum N-glycans and N-glycosylation patterns were compared between NSCLC and control groups. In addition, a panel of N-glycan biomarkers for NSCLC diagnosis was established and validated using machine learning algorithms. As a result, a total of 54 N-glycan structures were identified in human serum. Compared with healthy controls, 29 serum N-glycans were increased or decreased in NSCLC patients. N-glycan abundance in different histological types or clinical stages of NSCLC presented differentiated changes. Furthermore, an optimal biomarker panel of eight N-glycans was constructed based on logistic regression, with an AUC of 0.86 in the validation set. Notably, this model also showed a desirable capacity in distinguishing early-stage patients from healthy controls (AUC = 0.88). In conclusion, our work highlights the abnormal N-glycan profiles in NSCLC and provides supports potential application of N-glycan biomarker panel in clinical NSCLC detection.  相似文献   

9.
We wished to construct a prognostic model based on ferroptosis-related genes and to simultaneously evaluate the performance of the prognostic model and analyze differences between high-risk and low-risk groups at all levels. The gene-expression profiles and relevant clinical data of patients with non-small-cell lung cancer (NSCLC) were downloaded from public databases. Differentially expressed genes (DEGs) were obtained by analyzing differences between cancer tissues and paracancerous tissues, and common genes between DEGs and ferroptosis-related genes were identified as candidate ferroptosis-related genes. Next, a risk-score model was constructed using univariate Cox analysis and least absolute shrinkage and selection operator (Lasso) analysis. According to the median risk score, samples were divided into high-risk and low-risk groups, and a series of bioinformatics analyses were conducted to verify the predictive ability of the model. Single-sample gene set enrichment analysis (ssGSEA) was used to investigate differences in immune status between high-risk and low-risk groups, and differences in gene mutations between the two groups were investigated. A risk-score model was constructed based on 21 ferroptosis-related genes. A Kaplan–Meier curve and receiver operating characteristic curve showed that the model had good prediction ability. Univariate and multivariate Cox analyses revealed that ferroptosis-related genes associated with the prognosis may be used as independent prognostic factors for the overall survival time of NSCLC patients. The pathways enriched with DEGs in low-risk and high-risk groups were analyzed, and the enriched pathways were correlated significantly with immunosuppressive status.  相似文献   

10.
Growing evidence confirms that ferroptosis plays an important role in tumor growth inhibition. However, some non-small-cell lung cancer (NSCLC) cell lines are less sensitive to erastin-induced ferroptotic cell death. Elucidating the mechanism of resistance of cancer cells to erastin-induced ferroptosis and increasing the sensitivity of cancer cells to erastin need to be addressed. In our experiment, erastin and acetaminophen (APAP) cotreatment inhibited NSCLC cell viability and promoted ferroptosis and apoptosis, accompanied with attenuation of glutathione and ectopic increases in lipid peroxides. Erastin and APAP promoted NSCLC cell death by regulating nucleus translocation of nuclear factor erythroid 2-related factor 2 (Nrf2); and the ferroptosis induced by erastin and APAP was abrogated by bardoxolone methyl (BM) with less generation of reactive oxygen species and malondialdehyde. As a downstream gene of Nrf2, heme oxygenase-1 expression decreased significantly with the cotreatment of erastin and APAP, which could be rescued by BM. In vivo experiment showed that the combination of erastin and APAP had a synergic therapeutic effect on xenograft of lung cancer. In short, the present study develops a new effective treatment for NSCLC by synergizing erastin and APAP to induce ferroptosis.  相似文献   

11.
Benign prostatic hyperplasia (BPH) is one of the most common causes of lower urinary tract symptoms (LUTS) in elderly man. However, the underlying molecular mechanisms of BPH have not been completely elucidated. We identified the key genes and pathways by using analysis of Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using edgeR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed for the DEGs by Database for Annotation, Visualization and Integrated Discovery (DAVID) database and ConsensusPathDB, respectively. Then, protein–protein interaction (PPI) networks were established by the Search Tool for the Retrieval of Interacting Genes (STRING) database and visualized by Cytoscape software. Finally, we identified 660 DEGs ultimately including 268 upregulated genes and 392 downregulated genes. GO analysis revealed that DEGs were mainly enriched in extracellular exosome, identical protein binding, mitochondrial adenosine triphosphate (ATP) synthesis coupled proton transport, extracelluar matrix, focal adhesion, cytosol, Golgi apparatus, cytoplasm, protein binding, and Golgi membrane. Focal adhesion pathway, FoxO signaling pathway, and autophagy pathway were selected. Ubiquitin-conjugating enzyme E2 C (UBE2C), serine/threonine kinase (AKT1), mitogen-activated protein kinase 1 (MAPK1), cyclin B1 (CCNB1), polo-like kinase 1 (PLK1) were filtrated as the hub genes according to the degree of connectivity from the PPI network. The five hub genes including UBE2C, AKT1, MAPK1, CCNB1, PLK1 may play key roles in the pathogenesis of benign prostatic hyperplasia (BPH). Focal adhesion pathway, FoxO signaling pathway, and autophagy pathway may be crucial for the progression of BPH.  相似文献   

12.
Cisplatin resistance of non-small-cell lung cancer (NSCLC) needs to be well elucidated. RING finger protein (RNF38) has been proposed as a biomarker of NSCLC poor prognosis. However, its role in drug resistance in NSCLC is poorly understood. RNF38 expression was detected in normal lung epithelial cell and four NSCLC cell lines. RNF38 was stably overexpressed in A549 and H460 cells or silenced in H1975 and cisplatin-resistant A549 cells (A549-CDDP resistant) using lentiviral vectors. RNF38 expression levels were determined using quantitative real-time polymerase chain reaction and western blotting analysis. Cell viability in response to different concentrations of cisplatin was evaluated by Cell Counting Kit-8 assay. RNF38 expression levels were markedly elevated in NSCLC cells and cells harboring high RNF38 were less sensitive to cisplatin. Overexpression of RNF38 reduced, while RNF38 silencing increased the drug sensitivity of cisplatin in NSCLC cells. Cisplatin-resistant cells expressed high RNF38 level. RNF38 silencing promoted cell apoptosis and enhanced the drug sensitivity of cisplatin in cisplatin-resistant NSCLC cells. These findings indicate that RNF38 might induce cisplatin resistance of NSCLC cells via promoting cell apoptosis and RNF38 could be a novel target for rectify cisplatin resistance in NSCLC cases.  相似文献   

13.
14.
The purpose of this current study is to elucidate whether altered microRNA-365 (miR-365) has an association with the initiation and development of non-small-cell lung cancer (NSCLC) by targeting TRIM25 expression. The expression of miR-365 and TRIM25 in NSCLC tissues, adjacent normal tissues, and NSCLC cell lines were detected. The relationship between miR-365 expression and TRIM25 with the clinicopathological characteristics of NSCLC was analyzed. The putative binding site between miR-365 and TRIM25 was determined by luciferase activity assay. miR-365 inhibitors and miR-365 mimics were transfected to human NSCLC A549 cells, and the cell viability was detected by cell counting kit-8 assay; flow cytometry was carried out to determine cell cycle and apoptosis rate. Poorly expressed miR-365 and overexpressed TRIM25 was found in NSCLC tissues. TRIM25 was determined as a target gene of miR-365. The miR-365 and TRIM25 expression were related to the clinicopathological features of NSCLC, such as pathological classification, differentiation degree, TNM stage as well as lymph node metastasis. miR-365 suppressed the expression of TRIM25 and elevated the expression of the proapoptotic protein in NSCLC cells. Our study demonstrates that altered expression of miR-365 has a close association with the occurrence and development of NSCLC by inhibiting TRIM25 expression.  相似文献   

15.
The global physiological function of specifically expressed genes of mitoxantrone (MTX)‐resistant prostate cancer (PCa) is unclear. In this study, gene expression pattern from microarray data was investigated for identifying differentially expressed genes (DEGs) in MTX‐resistant PCa xenografts. Human PCa cell lines DU145 and PC3 were cultured in vitro and xenografted into severe combined immunodeficiency (SCID) mice, treated with MTX intragastrically, three times a week until all mice relapsed. Gene expression profiles of the xenografts from castrated mice were performed with Affymetrix human whole genomic oligonucleotide microarray. The Cytoscape software was used to investigate the relationship between proteins and the signalling transduction network. A total of 355 overlapping genes were differentially expressed in MTX‐resistant DU145R and PC3R xenografts. Of these, 16 genes were selected to be validated by quantitative real‐time PCR (qRT‐PCR) in these xenografts, and further tested in a set of formalin‐fixed, paraffin‐embedded and optimal cutting temperature (OCT) clinical tumour samples. Functional and pathway enrichment analyses revealed that these DEGs were closely related to cellular activity, androgen synthesis, DNA damage and repair, also involved in the ERK/MAPK, PI3K/serine‐threonine protein kinase, also known as protein kinase B, PKB (AKT) and apoptosis signalling pathways. This exploratory analysis provides information about potential candidate genes and may bring new insights into the molecular cascade involvement in MTX‐resistant PCa.  相似文献   

16.
Non-small-cell lung cancer (NSCLC) is a cancer with high morbidity and mortality. We aimed to define the effect of Go-Ichi-Ni-San complex subuint 2 (GINS2) acting on NSCLC. The expressions of GINS2 in NSCLC tissues and cells were detected using real-time quantitative polymerase chain reaction, western blot, and immunohistochemistry (IHC). The relationship between GINS2 expression and NSCLC prognosis or clinicopathologic features was analyzed through statistical analysis. The overexpressed or downexpressed plasmids of GINS2 were transfected into NSCLC cell lines, and then cell proliferation, invasion, and migration viability were, respectively, determined by Cell Counting Kit-8 assay, transwell, and wound healing assay. The epithelial–mesenchymal transition (EMT) was observed and the EMT-related proteins were measured using IHC and western blot. The function of GINS2 in vivo was assessed by mice model. The related proteins of mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathways were evaluated using western blot. GINS2 expression was upregulated in NSCLC tissues and cell lines, and its high expression was correlated with the poor prognosis and several clinicopathologic features, such as TMN stages (tumor size, lymph node, and metastasis) and clinical stages. GINS2 enhanced NSCLC cell proliferation, migration, and invasion viability in vivo and in vitro. GINS2 also promoted NSCLC cells EMT. In addition, GINS2 could regulate phosphorylated proteins of PI3K p85, Akt, MEK, and ERK expressions, it revealed that GINS2 effected on PI3K/Akt and MEK/ERK pathways. GINS2 promoted cell proliferation, migration, invasion, and EMT via modulating PI3K/Akt and MEK/ERK signaling pathways. It might be a target in NSCLC treatment.  相似文献   

17.
Thyroid cancer is a common endocrine malignancy with a rapidly increasing incidence worldwide. Although its mortality is steady or declining because of earlier diagnoses, its survival rate varies because of different tumour types. Thus, the aim of this study was to identify key biomarkers and novel therapeutic targets in thyroid cancer. The expression profiles of GSE3467, GSE5364, GSE29265 and GSE53157 were downloaded from the Gene Expression Omnibus database, which included a total of 97 thyroid cancer and 48 normal samples. After screening significant differentially expressed genes (DEGs) in each data set, we used the robust rank aggregation method to identify 358 robust DEGs, including 135 upregulated and 224 downregulated genes, in four datasets. Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analyses of DEGs were performed by DAVID and the KOBAS online database, respectively. The results showed that these DEGs were significantly enriched in various cancer-related functions and pathways. Then, the STRING database was used to construct the protein–protein interaction network, and modules analysis was performed. Finally, we filtered out five hub genes, including LPAR5, NMU, FN1, NPY1R, and CXCL12, from the whole network. Expression validation and survival analysis of these hub genes based on the The Cancer Genome Atlas database suggested the robustness of the above results. In conclusion, these results provided novel and reliable biomarkers for thyroid cancer, which will be useful for further clinical applications in thyroid cancer diagnosis, prognosis and targeted therapy.  相似文献   

18.
19.
20.
Purpose: N6-methyladenosine (m6A) is among the most abundant mRNA modifications in eukaryote. The aim of the present study was to investigate function of m6A mRNA methylation in lung cancer and the underlying mechanism.Methods: Microarray analysis was performed to detect the differences in RNA expression between cancerous and adjacent non-cancerous tissue samples. The target mRNAs were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Hierarchical clustering of RNAs was conducted to identify distinct m6A methylation or expression patterns between the samples.Results: In the present study, some differentially expressed genes (DEGs) of mRNAs were identified, including up-regulated secret phosphoprotein 1 (SPP1) and down-regulated pRB. Functional enrichment analysis revealed that while differential hypermethylation was related to cell cycle, intracellular part and protein binding, the main pathway involved herpes simplex virus 1 infection related to down-regulated AKT, Araf1 and BCL2A1. In the meantime, sexual reproduction, cohesin complex and protein C-terminus binding was functionally linked to differential hypomethylation, while fluid shear stress and atherosclerosis were identified as the main pathways related to up-regulated GST and CNP.Conclusions: We showed that lung cancer development involved differential expression of SPP1 and pRB mRNA, as well as m6A mRNA methylation in AKT, APAF1, BCL2A1, GST and CNP genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号