首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
We characterized the adult body form of the crested newt (Triturus cristatus superspecies) and explored its evolution. From seven morphometric traits, we determined that body size, interlimb distance and head width define the body form. None of the morphometric traits showed a phylogenetic signal. Three body‐shape morphotypes (Triturus dobrogicus + T. cristatus, Triturus carnifex + Triturus macedonicus and Triturus karelinii + Triturus arntzeni) and three body‐size morphotypes (T. dobrogicus, T. cristatus and all other crested newts) could be recognized. The ancestral phenotype (a large body with a short trunk and a wide head) characterized T. karelinii and T. arntzeni. Triturus carnifex and T. macedonicus had a somewhat different phenotype (large body and wide head, accompanied by mild body elongation). The most derived phenotype included body size reduction and more pronounced body elongation in T. cristatus and, especially, in T. dobrogicus. Body elongation occurred by trunk lengthening but not head and tail lengthening. Additionally, contrary to other tetrapods, evolutionary axis elongation in crested newts was followed by a decrease in body size. We advocate the hypothesis that ecology drives the evolution of body form in crested newts.  相似文献   

2.
Within-individual variation in virtually every conceivable morphological and functional feature of reiterated structures is a pervasive feature of plant phenotypes. In particular, architectural effects, regular, repeatable patterns of intra-individual variation in form and function that are associated with position are nearly ubiquitous. Yet, flowers also are predicted to be highly integrated. For animal-pollinated plants, the coordination of multiple organs within each flower is required to achieve the complex functions of pollinator attraction and orientation, pollen donation and pollen receipt. To the extent that pollinators may select for multiple independent functions, phenotypic integration within flowers may also be modular. That is, subsets of floral structures may be integrated but vary independently of other subsets of structures that are themselves integrated. How can phenotypic integration and modularity be understood within the context of architectural effects? This essay reviews recent research on patterns of floral integration and modularity and explores the potential for spatial and temporal changes in the selective environment of individual flowers to result in positional variation in patterns of morphological integration.  相似文献   

3.
    
Animal signals are inherently complex phenotypes with many interacting parts combining to elicit responses from receivers. The pattern of interrelationships between signal components reflects the extent to which each component is expressed, and responds to selection, either in concert with or independently of others. Furthermore, many species have complex repertoires consisting of multiple signal types used in different contexts, and common morphological and physiological constraints may result in interrelationships extending across the multiple signals in species’ repertoires. The evolutionary significance of interrelationships between signal traits can be explored within the framework of phenotypic integration, which offers a suite of quantitative techniques to characterize complex phenotypes. In particular, these techniques allow for the assessment of modularity and integration, which describe, respectively, the extent to which sets of traits covary either independently or jointly. Although signal and repertoire complexity are thought to be major drivers of diversification and social evolution, few studies have explicitly measured the phenotypic integration of signals to investigate the evolution of diverse communication systems. We applied methods from phenotypic integration studies to quantify integration in the two primary vocalization types (advertisement and aggressive calls) in the treefrogs Hyla versicolor, Hyla cinerea, and Dendropsophus ebraccatus. We recorded male calls and calculated standardized phenotypic variance–covariance ( P ) matrices for characteristics within and across call types. We found significant integration across call types, but the strength of integration varied by species and corresponded with the acoustic similarity of the call types within each species. H. versicolor had the most modular advertisement and aggressive calls and the least acoustically similar call types. Additionally, P was robust to changing social competition levels in H. versicolor. Our findings suggest new directions in animal communication research in which the complex relationships among the traits of multiple signals are a key consideration for understanding signal evolution.  相似文献   

4.
    
The tetrapod forelimb and hindlimb are serially homologous structures that share a broad range of developmental pathways responsible for their patterning and outgrowth. Covariation between limbs, which can introduce constraints on the production of variation, is related to the duplication of these developmental factors. Despite this constraint, there is remarkable diversity in limb morphology, with a variety of functional relationships between and within forelimb and hindlimb elements. Here we assess a hierarchical model of limb covariation structure based on shared developmental factors. We also test whether selection for morphologically divergent forelimbs or hindlimbs is associated with reduced covariation between limbs. Our sample includes primates, murines, a carnivoran, and a chiropteran that exhibit varying degrees of forelimb and hindlimb specialization, limb size divergence, and/or phylogenetic relatedness. We analyze the pattern and significance of between-limb morphological covariation with linear distance data collected using standard morphometric techniques and analyzed by matrix correlations, eigenanalysis, and partial correlations. Results support a common limb covariation structure across these taxa and reduced covariation between limbs in nonquadruped species. This result indicates that diversity in limb morphology has evolved without signficant modifications to a common covariation structure but that the higher degree of functional limb divergence in bats and, to some extent, gibbons is associated with weaker integration between limbs. This result supports the hypothesis that limb divergence, particularly selection for increased functional specialization, involves the reduction of developmental factors common to both limbs, thereby reducing covariation.  相似文献   

5.
Constraints on form may determine how organisms diversify. As a result of competition for the limited space within the body, investment in adjacent structures could represent an evolutionary compromise. For example, evolutionary trade‐offs resulting from limited space in the head could have influenced how the sizes of the jaw muscle, as well as the eyes, evolved in North American cyprinid fishes. To test the evolutionary independence of the size of these structures, we measured the mass of the three major adductor mandibulae muscles and determined the eye volume in 36 cyprinid species. Using a novel phylogeny, we tested the hypotheses that the sizes of these four structures were negatively correlated with each other during cyprinid evolution. We found that evolutionary change in the adductor mandibulae muscles was generally positively and/or not correlated, suggesting that competition for space among cyprinid jaw muscles has not influenced their evolution. However, there was a negative relationship between mass of adductor mandibulae 1 and eye volume, indicating that change in these physically adjacent structures is consistent with an evolutionary constructional constraint. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 136–146.  相似文献   

6.
7.
8.
Characterizing the architecture of bipartite networks is increasingly used as a framework to study biotic interactions within their ecological context and to assess the extent to which evolutionary constraint shape them. Orchid mycorrhizal symbioses are particularly interesting as they are viewed as more beneficial for plants than for fungi, a situation expected to result in an asymmetry of biological constraint. This study addressed the architecture and phylogenetic constraint in these associations in tropical context. We identified a bipartite network including 73 orchid species and 95 taxonomic units of mycorrhizal fungi across the natural habitats of Reunion Island. Unlike some recent evidence for nestedness in mycorrhizal symbioses, we found a highly modular architecture that largely reflected an ecological barrier between epiphytic and terrestrial subnetworks. By testing for phylogenetic signal, the overall signal was stronger for both partners in the epiphytic subnetwork. Moreover, in the subnetwork of epiphytic angraecoid orchids, the signal in orchid phylogeny was stronger than the signal in fungal phylogeny. Epiphytic associations are therefore more conservative and may co‐evolve more than terrestrial ones. We suggest that such tighter phylogenetic specialization may have been driven by stressful life conditions in the epiphytic niches. In addition to paralleling recent insights into mycorrhizal networks, this study furthermore provides support for epiphytism as a major factor affecting ecological assemblage and evolutionary constraint in tropical mycorrhizal symbioses.  相似文献   

9.
    
In the past decade biting midges of the subgenus Avaritia (Diptera: Ceratopogonidae) have been popular subjects of applied entomological studies in Europe owing to their implication as biological vectors in outbreaks of bluetongue and Schmallenberg viruses. This study uses a combination of cytochrome oxidase subunit I barcode sequencing and geometric morphometric analyses to investigate wing shape as a means to infer species identification within this subgenus. In addition the congruence of morphological data with different phylogenetic hypotheses is tested. Five different species of the subgenus Avaritia were considered in the study (C. obsoletus (Meigen); C. scoticus Kettle and Lawson; C. chiopterus (Meigen); C. dewulfi Goetghebuer and C. imicola (Kieffer)). The study demonstrated that over 90% of individuals could be separated correctly into species by their wing shape and that patterns of morphological differentiation derived from the geometric morphometric analyses were congruent with phylogenies generated from sequencing data. Morphological data produced are congruent with monophyly of the subgenus Avaritia and the exclusion of C. dewulfi from the group containing C. obsoletus, C. scoticus and C. chiopterus. The implications of these results and their importance in a wider context of integrating multiple data types to interpret both phylogeny and species characterization is discussed.  相似文献   

10.
    
As fish move and interact with their aquatic environment by swimming, small morphological variations of the locomotor system can have profound implications on fitness. Damselfishes (Pomacentridae) have inhabited coral reef ecosystems for more than 50 million years. As such, habitat preferences and behavior could significantly constrain the morphology and evolvability of the locomotor system. To test this hypothesis, we used phylogenetic comparative methods on morphometric, ecological and behavioral data. While body elongation represented the primary source of variation in the locomotor system of damselfishes, results also showed a diverse suite of morphological combinations between extreme morphologies. Results show clear associations between behavior, habitat preferences, and morphology, suggesting ecological constraints on shape diversification of the locomotor system. In addition, results indicate that the three modules of the locomotor system are weakly correlated, resulting in versatile and independent characters. These results suggest that Pomacentridae is shape may result from the interaction between (1) integrated parts of morphological variation that maintain overall swimming ability and (2) relatively independent parts of the morphology that facilitate adaptation and diversification. J. Morphol. 277:603–614, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
    
  相似文献   

12.
13.
    
The nasal capsule and nasal sac of Dibamus taylori are described based on a plate reconstruction of serially sectioned material and are compared with several other squamate taxa. The ethmoidal region of D. taylori is characterized by a short nasal vestibule, a well developed concha, a much reduced and nearly functionless Jacobson's organ, an incomplete nasal roof, and a true nasopharyngeal duct with a complicated secondary palate. Cartilaginous and epithelial structures of the ethmoidal region provide many informative and useful characters for a phylogenetic analysis. Different anatomical features of D. taylori are compared with other burrowing forms ( Acontias meleagris, Annietta, pulchra Voetzkowia mira, Feylinia curron ) and discussed functionally and phylogenetically. Phylogenetic analysis of all higher squamate taxa using 144 available data derived from many regions of the body indicates relative relationships as (((Dibamidae, Amphisbaenia) Serpentes) Scleroglossa).  相似文献   

14.
15.
16.
  总被引:3,自引:0,他引:3  
Han JD 《Cell research》2008,18(2):224-237
The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approaches have been employed to study the structure, function and dynamics of molecular networks, and begin to reveal important links of various network properties to the functions of the biological systems. In agreement with these functional links, evolutionary selection of a network is apparently based on the function, rather than directly on the structure of the network. Dynamic modularity is one of the prominent features of molecular networks. Taking advantage of such a feature may simplify network-based biological studies through construction of process-specific modular networks and provide functional and mechanistic insights linking genotypic variations to complex traits or diseases, which is likely to be a key approach in the next wave of understanding complex human diseases. With the development of ready-to-use network analysis and modeling tools the networks approaches will be infused into everyday biological research in the near future.  相似文献   

17.
Eigenfunction analyses have been widely used to model patterns of autocorrelation in time, space and phylogeny. In a phylogenetic context, Diniz-Filho et al. (1998) proposed what they called Phylogenetic Eigenvector Regression (PVR), in which pairwise phylogenetic distances among species are submitted to a Principal Coordinate Analysis, and eigenvectors are then used as explanatory variables in regression, correlation or ANOVAs. More recently, a new approach called Phylogenetic Eigenvector Mapping (PEM) was proposed, with the main advantage of explicitly incorporating a model-based warping in phylogenetic distance in which an Ornstein-Uhlenbeck (O-U) process is fitted to data before eigenvector extraction. Here we compared PVR and PEM in respect to estimated phylogenetic signal, correlated evolution under alternative evolutionary models and phylogenetic imputation, using simulated data. Despite similarity between the two approaches, PEM has a slightly higher prediction ability and is more general than the original PVR. Even so, in a conceptual sense, PEM may provide a technique in the best of both worlds, combining the flexibility of data-driven and empirical eigenfunction analyses and the sounding insights provided by evolutionary models well known in comparative analyses.  相似文献   

18.
    
Acoustic signals show immense variation among passerines, and several hypotheses have been proposed to explain this diversity. In this study, we tested, for the first time, the relationships of song structure to phylogeny, habitat type, and morphology in the vireos and allies (Vireonidae). Every measure of song structure considered in this study had moderate and significant phylogenetic signal. Furthermore, two song-constraining morphological traits, bill shape and body mass, also exhibited significant phylogenetic signal. Song length showed the largest within-clade similarity; longer songs were highly conserved in part of the greenlet (Hylophilus) clade, whereas shorter songs characterized the remaining seven genera. We found no differences in song structure among vireonids living in different habitat types. However, vireonids with shorter, stouter bills and larger bodies sang songs with lower minimum and maximum peak frequency, compared with species with longer, thinner bills and smaller bodies. We conclude that Vireonidae song evolution is driven partially by phylogenetically conserved morphological traits. Our findings support the phylogenetic signal and morphological constraints hypotheses explaining structural diversity in avian acoustic signals.  相似文献   

19.
    
Losos JB 《Ecology letters》2008,11(10):995-1003
Ecologists are increasingly adopting an evolutionary perspective, and in recent years, the idea that closely related species are ecologically similar has become widespread. In this regard, phylogenetic signal must be distinguished from phylogenetic niche conservatism. Phylogenetic niche conservatism results when closely related species are more ecologically similar that would be expected based on their phylogenetic relationships; its occurrence suggests that some process is constraining divergence among closely related species. In contrast, phylogenetic signal refers to the situation in which ecological similarity between species is related to phylogenetic relatedness; this is the expected outcome of Brownian motion divergence and thus is necessary, but not sufficient, evidence for the existence of phylogenetic niche conservatism. Although many workers consider phylogenetic niche conservatism to be common, a review of case studies indicates that ecological and phylogenetic similarities often are not related. Consequently, ecologists should not assume that phylogenetic niche conservatism exists, but rather should empirically examine the extent to which it occurs.  相似文献   

20.
    
Dental topographic analysis allows comparisons of variably worn teeth within and between species to infer relationships between dental form and diet in living primates, with implications for reconstructing feeding adaptations of fossil forms. Although analyses to date have been limited mainly to the M2s of a few primate taxa, these suggest that dental topographic analysis holds considerable promise. Still, larger samples including a greater range of species and different tooth types are needed to determine the potential of this approach. Here we examine dental topography of molar teeth of Cercocebus torquatus (n=48), Cercopithecus campbelli (n=50), Colobus polykomos (n=50), and Procolobus badius (n=50). This is the first such study of large samples of Old World monkeys, and the first to include analyses of both M1s and M2s. Average slope, relief, and surface angularity were computed and compared among tooth types, wear stages, and species. Results suggest that (1) data for M1s and M2s cannot be compared directly; (2) slope and relief decline with wear on M2s of all taxa, and M1s of the colobines, whereas angularity does not generally change except in the most worn specimens; and (3) folivorous colobines tend to have more sloping surfaces and more relief than do frugivorous cercopithecines, though angularity does not clearly separate taxa by diet. Am. J. Primatol. 71:466–477, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号