首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Translocation of virulence effector proteins through the type III secretion system (T3SS) is essential for the virulence of many medically relevant Gram‐negative bacteria. The T3SS ATPases are conserved components that specifically recognize chaperone–effector complexes and energize effector secretion through the system. It is thought that functional T3SS ATPases assemble into a cylindrical structure maintained by their N‐terminal domains. Using size‐exclusion chromatography coupled to multi‐angle light scattering and native mass spectrometry, we show that in the absence of the N‐terminal oligomerization domain the Salmonella T3SS ATPase InvC can form monomers and dimers in solution. We also present for the first time a 2.05 å resolution crystal structure of InvC lacking the oligomerization domain (InvCΔ79) and map the amino acids suggested for ATPase intersubunit interaction, binding to other T3SS proteins and chaperone–effector recognition. Furthermore, we validate the InvC ATP‐binding site by co‐crystallization of InvCΔ79 with ATPγS (2.65 å) and ADP (2.80 å). Upon ATP‐analogue recognition, these structures reveal remodeling of the ATP‐binding site and conformational changes of two loops located outside of the catalytic site. Both loops face the central pore of the predicted InvC cylinder and are essential for the function of the T3SS ATPase. Our results present a fine functional and structural correlation of InvC and provide further details of the homo‐oligomerization process and ATP‐dependent conformational changes underlying the T3SS ATPase activity.  相似文献   

2.
Type Three Secretion (T3S) ATPases are involved in delivery of virulent factors from bacteria to their hosts (through injectisome) in an energy (ATP) dependent manner during pathogenesis. The activities of these ATPases are tightly controlled by their specific regulators. In Yersinia enterocolitica, YsaN was predicted as a putative ATPase of the Ysa-Ysp Type Three Secretion System (T3SS) based on sequence similarity with other T3S ATPases. However detailed study and characterization of YsaN and its regulation remains largely obscure. Here, in this study, we have successfully cloned, over-expressed, purified and characterized the molecular properties of YsaN from Yersinia enterocolitica. YsaN acts as a Mg2+ dependent ATPase and exists in solution as higher order oligomer (dodecamer). The ATPase activity of oligomeric YsaN is several fold higher than the monomeric form. Furthermore, by employing in silico studies we have identified the existence of a negative regulator of YsaN- a hypothetical protein YE3555 (termed ‘YsaL’). To verify the functionality of YsaL, we have evaluated the biochemical and biophysical properties of YsaL. Purified YsaL is dimeric in solution and strongly associates with YsaN to form a stable heterotrimeric YsaL-YsaN complex (stoichiometry- 2∶1). The N terminal 6–20 residues of YsaN are invariably required for stable YsaL-YsaN complex formation. YsaL inhibited the ATPase activity of YsaN with a maximum inhibition at the molar ratio 2∶1 (YsaL: YsaN). In short, our studies provide an insight into the presence of YsaN ATPase in Yersinia enterocolitica and its regulator YsaL. Our studies also correlate the functionality of one of the existing protein interaction networks that possibly is indispensable for the energy dependent process of Ysa-Ysp T3SS in pathogenic Yersinia enterocolitica.  相似文献   

3.
The transport characteristics of the plasma membrane H+‐ATPase (PMHA) and Na+‐ATPase (PMNA) from marine unicellular green alga Tetraselmis viridis Rouch. were studied using sealed plasma membrane vesicles isolated from this species. The activities of the ATPases were investigated by monitoring the ATP‐dependent pH changes in the vesicle lumen. PMHA operation led to acidification of the vesicle lumen, whereas Na+ translocation into plasma membrane vesicles catalysed by PMNA was accompanied by H+ efflux, namely the alkalization of the vesicle lumen (Balnokin et al., FEBS Lett 462: 402–406, 1999). The intravesicular acidification and alkalization were detected with the ΔpH probe acridine orange and the pH probe pyranine, respectively. PMHA and PMNA were found to operate in distinct pH regions, maximal activity of PMHA being observed at pH 6.5 and that of PMNA at pH 7.8. Kinetic studies revealed that the ATPases have similar affinities to their primary substrate, MgATP complex (an apparent Km = 34 ± 6.2 µM for PMHA and 73 ± 8.7 µM for PMNA). At the same time, the ATPases were differently affected by free Mg2+ and ATP. Free Mg2+ appeared to be a mixed‐type inhibitor for PMNA (Ki′ = 210 µM) but it did not suppress PMHA. Conversely, free ATP markedly suppressed PMHA being a mixed‐type inhibitor (Ki′ = 330 µM), but PMNA was affected by free ATP only slightly. Furthermore, the ATPases substantially differed in their sensitivities to the inhibitors of membrane ATPases, such as orthovanadate, N‐ethylmaleimide and N,N′‐dicyclohexylcarbodiimide. The differences found in the properties of the PMHA and PMNA are discussed in terms of regulation of their activities and their capacity to be involved in cytosolic ion homeostasis in T. viridis cells.  相似文献   

4.
The opportunistic pathogen Pseudomonas aeruginosa may cause both acute and chronic‐persistent infections in predisposed individuals. Acute infections require the presence of a functional type III secretion system (T3SS), whereas chronic P. aeruginosa infections are characterized by the formation of drug‐resistant biofilms. The T3SS and biofilm formation are reciprocally regulated by the signaling kinases LadS, RetS, and GacS. RetS downregulates biofilm formation and upregulates expression of the T3SS through a unique mechanism. RetS forms a heterodimeric complex with GacS and thus prevents GacS autophosphorylation and downstream signaling. The signals that regulate RetS are not known but RetS possesses a distinctive periplasmic sensor domain that is believed to serve as receptor for the regulatory ligand. We have determined the crystal structure of the RetS sensory domain at 2.0 Å resolution. The structure closely resembles those of carbohydrate binding modules of other proteins, suggesting that the elusive ligands are likely carbohydrate moieties. In addition to the conserved beta‐sandwich structure, the sensory domain features two alpha helices which create a unique surface topology. Protein–protein crosslinking and fluorescence energy transfer experiments also revealed that the sensory domain dimerizes with a dissociation constant of Kd = 580 ± 50 nM, a result with interesting implications for our understanding of the underlying signaling mechanism. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Bacterial pathogenesis often depends on regulatory networks, two‐component systems and small RNAs (sRNAs). In Pseudomonas aeruginosa, the RetS sensor pathway downregulates expression of two sRNAs, rsmY and rsmZ. Consequently, biofilm and the Type Six Secretion System (T6SS) are repressed, whereas the Type III Secretion System (T3SS) is activated. We show that the HptB signalling pathway controls biofilm and T3SS, and fine‐tunes P. aeruginosa pathogenesis. We demonstrate that RetS and HptB intersect at the GacA response regulator, which directly controls sRNAs production. Importantly, RetS controls both sRNAs, whereas HptB exclusively regulates rsmY expression. We reveal that HptB signalling is a complex regulatory cascade. This cascade involves a response regulator, with an output domain belonging to the phosphatase 2C family, and likely an anti‐anti‐σ factor. This reveals that the initial input in the Gac system comes from several signalling pathways, and the final output is adjusted by a differential control on rsmY and rsmZ. This is exemplified by the RetS‐dependent but HptB‐independent control on T6SS. We also demonstrate a redundant action of the two sRNAs on T3SS gene expression, while the impact on pel gene expression is additive. These features underpin a novel mechanism in the fine‐tuned regulation of gene expression.  相似文献   

6.
7.
The plasmid-determined arsenite and antimonite efflux ATPase of bacteria differs from other membrane transport ATPases, which are classified into several families (such as the F0F1-type H+-translocating ATP synthases, the related vacuolar H+-translocating ATPases, the P-type cation-translocating ATPases, and the superfamily which includes the periplasmic binding-protein-dependent systems in Gram-negative bacteria, the human multidrug resistance P-glycoprotein, and the cystic fibrosis transport regulator). The amino acid sequences of the components of the arsenic resistance system are not similar to known ATPase proteins. New findings with the arsenic resistance operons of bacterial plasmids suggest that instead of being an orphan the Ars system will now be the first recognized member of a new class of ATPases. Furthermore, fundamental questions of energy-coupling (ATP-driven or chemiosmotic) have recently been raised and the finding that the arsC gene product is a soluble enzyme that reduces arsenate to arsenite changes the previous picture of the functioning of this widespread bacterial system.  相似文献   

8.
作为一种对抗真核细胞和原核细胞的强有力细菌武器,Ⅵ型分泌系统(type Ⅵ secretion system,T6SS)广泛存在于革兰氏阴性菌中。铜绿假单胞菌是一种对多种抗生素具有耐药性并能够在人体引发急性和慢性感染的条件致病菌,它编码3套独立的T6SS,分别为H1-、H2-和H3-T6SS。T6SS通过介导细菌间竞争、生物被膜的形成、金属离子的摄取以及与真核宿主细胞之间的相互作用,对铜绿假单胞菌在毒力和适应环境方面发挥重要作用。本文主要对铜绿假单胞菌T6SS的组装、效应蛋白的分泌、功能及调控机制展开综述,旨在为T6SS的研究提供一定的参考,并为铜绿假单胞菌感染的预防和治疗提供一定的指导。  相似文献   

9.
A nitrate-sensitive, azide-insensitive ATPase isolated from M. crystallinum in the C3 and in the CAM state has been solubilized in active form using octylglucoside and Zwittergent 3–14. Like the membrane-bound tonoplast ATPase, the solubilized ATPase showed an increase in ATP-hydrolysis activity after transition from the C3 to the CAM mode of photosynthesis. The characteristics of the membrane-bound and the solubilized tonoplast ATPase were comparable with respect to salt stimulation, inhibitor effects, and MgATP2–-concentration dependence. Differing from the membrane-bound ATPases, the solubilized ATPase from C3- and CAM-M. crystallinum showed a pH optimum between pH 6.5 and 7.0. In order to compare the solubilized ATPases immunologically, antibodies were prepared against the tonoplast fraction of C3- and CAM-M. crystallinum. A cross-reaction was observed between antibodies against the tonoplast ATPase from C3- and CAM-M. crystallinum and the solubilized ATPase from C3- and CAM-M. crystallinum. A cross-reaction was also observed between antibodies against the tonoplast ATPase from C3- and CAM-M. crystallinum and the solubilized tonoplast ATPase from Kalanchoë daigremontiana. However, there was no cross-reaction with the solubilized plasmalemma ATPase from Festuca rubra.  相似文献   

10.
11.
Pseudomonas aeruginosa is known to cause life-threatening infections. The previous studies showed that the type III secretion system (T3SS) of this pathogen is a key virulence determinant, which is activated by polyamines signals spermidine (Spd) and spermine (Spm) from mammalian host. To test the potential of blocking host–pathogen communication in disease control, in this study we developed a high potency mouse monoclonal antibody (Mab 4E4, IgG1 sub-isotype) by using Spm–protein conjugate as an immunogen. Antibody specificity analysis showed that the antibody specifically recognize Spd and Spm. In vitro study showed the antibody significantly protected A549 cells against P. aeruginosa infection, and this protection was achieved by blocking polyamine uptake and downregulating T3SS expression. In vivo single injection of mouse with Mab 4E4 drastically reduced the serum polyamine level, which was maintained for more than 1 week. In a murine model of P. aeruginosa acute infection, injection of Mab 4E4 protected mice from lung injury and significantly improved the survival rate of mice.  相似文献   

12.
Two distinct membrane fractions containing H+-ATPase activity were prepared from red beet. One fraction contained a H+-ATPase activity that was inhibited by NO3 while the other contained a H+-ATPase inhibited by vanadate. We have previously proposed that these H+-ATPases are associated with tonoplast (NO3-sensitive) and plasma membrane (vanadate-sensitive), respectively. Both ATPase were examined to determine to what extent their activity was influenced by variations in the concentration of ATPase substrates and products. The substrate for both ATPase was MgATP2−, and Mg2+ concentrations in excess of ATP had only a slight inhibitory effect on either ATPase. Both ATPases were inhibited by free ATP (i.e. ATP concentrations in excess of Mg2+) and ADP but not by AMP. The plasma membrane ATPase was more sensitive than the tonoplast ATPase to free ATP and the tonoplast ATPase was more sensitive than the plasma membrane ATPase to ADP.

Inhibition of both ATPases by free ATP was complex. Inhibition of the plasma membrane ATPase by ADP was competitive whereas the tonoplast ATPase demonstrated a sigmoidal dependence on MgATP2− in the presence of ADP. Inorganic phosphate moderately inhibited both ATPases in a noncompetitive manner.

Calcium inhibited the plasma membrane but not the tonoplast ATPase, apparently by a direct interaction with the ATPase rather than by disrupting the MgATP2− complex.

The sensitivity of both ATPases to ADP suggests that under conditions of restricted energy supply H+-ATPase activity may be reduced by increases in ADP levels rather than by decreases in ATP levels per se. The sensitivity of both ATPases to ADP and free ATP suggests that modulation of cytoplasmic Mg2+ could modulate ATPase activity at both the tonoplast and plasma membrane.

  相似文献   

13.
GacS/GacA is a conserved two-component system that functions as a master regulator of virulence-associated traits in many bacterial pathogens, including Pseudomonas spp., that collectively infect both plant and animal hosts. Among many GacS/GacA-regulated traits, type III secretion of effector proteins into host cells plays a critical role in bacterial virulence. In the opportunistic plant and animal pathogen Pseudomonas aeruginosa, GacS/GacA negatively regulates the expression of type III secretion system (T3SS)-encoding genes. However, in the plant pathogenic bacterium Pseudomonas syringae, strain-to-strain variation exists in the requirement of GacS/GacA for T3SS deployment, and this variability has limited the development of predictive models of how GacS/GacA functions in this species. In this work we re-evaluated the function of GacA in P. syringae pv. tomato DC3000. Contrary to previous reports, we discovered that GacA negatively regulates the expression of T3SS genes in DC3000, and that GacA is not required for DC3000 virulence inside Arabidopsis leaf tissue. However, our results show that GacA is required for full virulence of leaf surface-inoculated bacteria. These data significantly revise current understanding of GacS/GacA in regulating P. syringae virulence.  相似文献   

14.
MutS, a member of the ABC ATPases superfamily, is a mismatch DNA-binding protein constituent of the DNA post-replicative mismatch repair system (MMRS). In this work, it is shown that the ATPase activity of Pseudomonas aeruginosa and Escherichia coli MutS is inhibited by ortho- and decavanadate. Structural comparison of the region involved in the ATP binding of E.coli MutS with the corresponding region of other ABC ATPases inhibited by vanadate, including the myosin– orthovanadate–Mg complex, showed that they are highly similar. From these results it is proposed that the orthovanadate inhibition of MutS ATPase can take place by a similar mechanism to that described for other ATPases. Docking of decavanadate on the ATP-binding region of MutS showed that the energetically more favorable interaction of this compound would take place with the complex MutS– ADP–Mg, suggesting that the inhibitory effect could be produced by a steric impediment of the protein ATP/ADP exchange. Besides the effect observed on the ATPase activity, vanadate also affects the DNA-binding capability of the protein, and partially inhibits the oligomerization of MutS and the temperature-induced inactivation of the protein. From the results obtained, and considering that vanadate is an intracellular trace component, this compound could be considered as a new modulator of the MMRS.  相似文献   

15.
Pseudomonas aeruginosa causes serious acute and chronic infections in humans. Major differences exist in disease pathogenesis, clinical treatment and outcomes between acute and chronic infections. P. aeruginosa acute infection characteristically involves the type III secretion systems (T3SS) while chronic infection is often associated with the formation of biofilms, a major cause of difficulties to eradicate chronic infections. The choice between acute and chronic infection or the switch between them by P. aeruginosa is controlled by regulatory pathways that control major virulence factors and genes associated with biofilm formation. In this study, we characterized a hybrid sensor kinase PA1611 that controls the expression of genes associated with acute and chronic infections in P. aeruginosa PAO1. Expression of PA1611 completely repressed T3SS and swarming motility while it promoted biofilm formation. The protein PA1611 regulates two small RNAs (sRNAs), rsmY and rsmZ which in turn control RsmA. Independent of phosphate relay, PA1611 interacts directly with RetS in vivo. The positive effect of RetS on factors associated with acute infection could presumably be restrained by PA1611 when chronic infection conditions are present. This RetS–PA1611 interaction, together with the known RetS–GacS interaction, may control disease progression and the lifestyle choice of P. aeruginosa.  相似文献   

16.
Kazuki Takeda  Kunio Miki 《EMBO reports》2009,10(11):1228-1234
V‐type ATPases (V‐ATPases) are categorized as rotary ATP synthase/ATPase complexes. The V‐ATPases are distinct from F‐ATPases in terms of their rotation scheme, architecture and subunit composition. However, there is no detailed structural information on V‐ATPases despite the abundant biochemical and biophysical research. Here, we report a crystallographic study of V1‐ATPase, from Thermus thermophilus, which is a soluble component consisting of A, B, D and F subunits. The structure at 4.5 Å resolution reveals inter‐subunit interactions and nucleotide binding. In particular, the structure of the central stalk composed of D and F subunits was shown to be characteristic of V1‐ATPases. Small conformational changes of respective subunits and significant rearrangement of the quaternary structure observed in the three AB pairs were related to the interaction with the straight central stalk. The rotation mechanism is discussed based on a structural comparison between V1‐ATPases and F1‐ATPases.  相似文献   

17.
Gram‐negative pathogens often use conserved type three secretion systems (T3SS) for virulence. The Shigella type three secretion apparatus (T3SA) penetrates the host cell membrane and provides a unidirectional conduit for injection of effectors into host cells. The protein Spa47 localizes to the base of the apparatus and is speculated to be an ATPase that provides the energy for T3SA formation and secretion. Here, we developed an expression and purification protocol, producing active Spa47 and providing the first direct evidence that Spa47 is a bona fide ATPase. Additionally, size exclusion chromatography and analytical ultracentrifugation identified multiple oligomeric species of Spa47 with the largest greater than 8 fold more active for ATP hydrolysis than the monomer. An ATPase inactive Spa47 point mutant was then engineered by targeting a conserved Lysine within the predicted Walker A motif of Spa47. Interestingly, the mutant maintained a similar oligomerization pattern as active Spa47, but was unable to restore invasion phenotype when used to complement a spa47 null S. flexneri strain. Together, these results identify Spa47 as a Shigella T3SS ATPase and suggest that its activity is linked to oligomerization, perhaps as a regulatory mechanism as seen in some related pathogens. Additionally, Spa47 catalyzed ATP hydrolysis appears to be essential for host cell invasion, providing a strong platform for additional studies dissecting its role in virulence and providing an attractive target for anti‐infective agents.  相似文献   

18.
19.
Cell calcium is accumulated in intracellular stores by sarco-endoplasmic reticulum Ca2+ ATPases functionally interacting with the membrane lipid environment. Cold adaptations of membrane lipids in Antarctic Sea organisms suggest possible adaptive effects also on sarco-endoplasmic reticulum Ca2+ ATPases. We investigated the SR Ca2+ ATPase of an Antarctic scallop, Adamussium colbecki, by characterising the enzyme activity and studying temperature effects. Ca2+ ATPase, assayed by following ATP hydrolysis, was thapsigargin- and vanadate-sensitive, showed maximum activity under 2 μM Ca2+, 200 mM KCl and pH 7.2, and had a K M for ATP of 22 ± 7 μM. Temperature effects showed an Arrhenius inversion between −1.8 and 0°C, indicating cold adaptation, an Arrhenius break at 10°C, and a collapse above 20°C. A. colbecki accumulates high amounts of cadmium in the digestive gland; heavy metal effects on sarco-endoplasmic reticulum Ca2+ ATPases were therefore tested, finding an IC50 = 0.9 μM for Hg2+ and 3 μM for Cd2+. Finally, SDS-PAGE analysis showed a main band at about 100 kDa, which was identified as sarco-endoplasmic reticulum Ca2+ ATPase after trypsin digestion, and accounted for 60% total protein. Accepted: 10 December 1998  相似文献   

20.
Bacterial invasion plays a critical role in the establishment of Pseudomonas aeruginosa infection and is aided by two major virulence factors – surface appendages and secreted proteases. The second messenger cyclic diguanylate (c-di-GMP) is known to affect bacterial attachment to surfaces, biofilm formation and related virulence phenomena. Here we report that MorA, a global regulator with GGDEF and EAL domains that was previously reported to affect virulence factors, negatively regulates protease secretion via the type II secretion system (T2SS) in P. aeruginosa PAO1. Infection assays with mutant strains carrying gene deletion and domain mutants show that host cell invasion is dependent on the active domain function of MorA. Further investigations suggest that the MorA-mediated c-di-GMP signaling affects protease secretion largely at a post-translational level. We thus report c-di-GMP second messenger system as a novel regulator of T2SS function in P. aeruginosa. Given that T2SS is a central and constitutive pump, and the secreted proteases are involved in interactions with the microbial surroundings, our data broadens the significance of c-di-GMP signaling in P. aeruginosa pathogenesis and ecological fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号