首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Abstract We conducted annual aerial surveys throughout the tidal reach of the Chesapeake Bay, USA, between 1977 and 2001 to estimate population size and reproductive performance for bald eagles (Haliaeetus leucocephalus). The population increased exponentially from 73 to 601 pairs with an average doubling time of 8.2 years. Annual population increase was highly variable and exhibited no indication of any systematic decline. A total of 7,590 chicks were produced from 5,685 breeding attempts during this period. The population has exhibited tremendous forward momentum such that >50% of young produced over the 25-year period were produced in the last 6 years. Rapid population growth may reflect the combined benefits of eliminating persistent biocides and active territory management. Reproductive rate along with associated success rate and average brood size increased throughout the study period. Average reproductive rate (chicks/breeding attempt) increased from 0.82 during the first 5 years of the survey to 1.50 during the last 5 years. Average success rate increased from 54.4% to >80.0% during the same time periods. The overall population will likely reach saturation within the next decade. The availability of undeveloped waterfront property has become the dominant limiting factor for bald eagles in the Chesapeake Bay. Maintaining the eagle population in the face of a rapidly expanding human population will continue to be the greatest challenge faced by wildlife biologists.  相似文献   

5.
Effectively managing take of wildlife resulting from human activities poses a major challenge for applied conservation. Demographic data essential to decisions regarding take are often expensive to collect and are either not available or based on limited studies for many species. Therefore, modeling approaches that efficiently integrate available information are important to improving the scientific basis for sustainable take thresholds. We used the prescribed take level (PTL) framework to estimate allowable take for bald eagles (Haliaeetus leucocephalus) in the conterminous United States. We developed an integrated population model (IPM) that incorporates multiple sources of information and then use the model output as the scientific basis for components of the PTL framework. Our IPM is structured to identify key parameters needed for the PTL and to quantify uncertainties in those parameters at the scale at which the United States Fish and Wildlife Service manages take. Our IPM indicated that mean survival of birds >1 year old was high and precise (0.91, 95% CI = 0.90–0.92), whereas mean survival of first-year eagles was lower and more variable (0.69, 95% CI = 0.62–0.78). We assumed that density dependence influenced recruitment by affecting the probability of breeding, which was highly imprecise and estimated to have declined from approximately 0.988 (95% CI = 0.985–0.993) to 0.66 (95% CI = 0.34–0.99) between 1994 and 2018. We sampled values from the posterior distributions of the IPM for use in the PTL and estimated that allowable take (e.g., permitted take for energy development, incidental collisions with human made structures, or removal of nests for development) ranged from approximately 12,000 to 20,000 individual eagles depending on risk tolerance and form of density dependence at the scale of the conterminous United States excluding the Southwest. Model-based thresholds for allowable take can be inaccurate if the assumptions of the underlying framework are not met, if the influence of permitted take is under-estimated, or if undetected population declines occur from other sources. Continued monitoring and use of the IPM and PTL frameworks to identify key uncertainties in bald eagle population dynamics and management of allowable take can mitigate this potential bias, especially where improved information could reduce the risk of permitting non-sustainable take.  相似文献   

6.
ABSTRACT In accordance with federal regulations, the United States Fish and Wildlife Service developed a postdelisting monitoring plan for the bald eagle (Haliaeetus leucocephalus) designed to detect a change in the number of occupied nests on a national scale. The plan employs a dual-frame approach to the survey design where a list frame (list of known nests) and an area frame (set of survey plots) are used in concert to estimate the number of occupied nests in 5-year intervals over a 20-year period. The plan offers no provisions for changes in list-frame integrity, nor does it contemplate the impact of such changes on survey performance. We used a long-term data set to quantify occupancy patterns for nests in Virginia, USA, and evaluated their influence on integrity of the list frame and performance of the proposed dual-frame monitoring approach. The average annual turnover rate for nests was 0.261, resulting in a rapid decay of the list frame. Decay of the list frame leads to a functional collapse of the dual-frame approach, down to the area-frame survey alone, early within the monitoring time horizon. This early decay of the list frame implies that the area-frame coverage needed to maintain the same statistical power as stated in the monitoring plan would have to be increased by a factor of 3 to 5 beyond that recommended in the current plan. Remedies for this deficiency undermine the cost benefit associated with inclusion of the list frame. We examined response of the dual-frame survey to variation in nest turnover rates and population growth rates and defined a state space where time to collapse is beyond the proposed 20-year time horizon. Because, under realistic estimates of turnover rates, the dual-frame approach collapses to the area frame within the proposed monitoring window, we recommend that the costs of list-frame maintenance be included in the procedure to optimize allocation of survey effort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号