共查询到20条相似文献,搜索用时 15 毫秒
1.
This is the first ultrastructural investigation of salivary glands in the family Cheyletidae. In both sexes of Bakericheyla chanayi, paired acinous salivary glands and tubular coxal glands were shown to be united into the common podocephalic system. The secretory portion of the salivary gland includes medial and lateral lobes composed of the five and two cells, respectively, with clearly distinct ultrastructure. The cytoplasm of the cells is occupied by the secretory granules containing fine fibrous material. The fine structure of both cell types suggest a proteinaceous nature of their secretions. A single central process extending from the apical face of each secretory cell passes through the common acinar cavity to enter the conducting duct. A pair of intercalary cells at the base of the conducting duct links it with the secretory portion of the gland. Extending towards the acinar cavity, protrusions of intercalary cells alternate the apical regions of the secretory cells and form with them highly‐specialized contacts characterized by the apical network of microtubules and microfilaments. Two possible ways of secretion are suggested: 1) exocytosis into the acinar cavity and 2) direct passage via the central processes. The detection of axon profiles in the gland body suggests a neural control for the glandular cell function. In tritonymphs, neither secretion nor large lateral lobe cells were observed up to the pharate stage when the lateral lobe undergoes rapid differentiation. The arrangement of the acinous gland is compared to that of other arthropods. Its composition appears to be close to the class three of insect glands. The involvement of the lateral lobe cells in silk production is discussed. J. Morphol. 276:772–786, 2015. © 2015 Wiley Periodicals, Inc. 相似文献
2.
【目的】蟋螽是直翅目中唯一具有吐丝筑巢行为的类群。本研究旨在探讨蟋螽丝腺的结构特点。【方法】应用解剖学观察、免疫荧光、苏木精-伊红染色、PAS苏木精染色、扫描电镜和透射电镜等方法从细胞水平对黑缘烟蟋螽Capnogryllacris nigromarginata丝腺的显微与超微结构进行了观察。【结果】黑缘烟蟋螽丝腺由导管和腺泡构成。腺泡由鞘细胞延伸形成的结缔组织鞘包围。腺泡的主体有4种细胞,分别为Ⅰ型分泌细胞、Ⅱ型分泌细胞、围细胞和腔细胞。Ⅰ型和Ⅱ型分泌细胞为大的腺细胞,形状不规则。分泌细胞细胞核很大,胞质内有大量的内质网和分泌颗粒。Ⅰ型分泌细胞靠近腺泡中心,PAS-苏木精染色表明Ⅰ型分泌细胞内含糖蛋白,Ⅱ型分泌细胞在腺泡外周,位于Ⅰ型分泌细胞与围细胞或结缔组织鞘之间。腔细胞分散在分泌细胞之间,包围形成胞外运输分泌物的通道。围细胞与鞘细胞接触,具有由细胞膜内陷形成的微绒毛腔,胞质内有大量的线粒体。围细胞微绒毛腔与腔细胞包围的细胞外运输通道相连,分泌细胞分泌的颗粒聚集在分泌细胞和胞外运输通道之间的连接处,并将分泌物排出至胞外运输通道。多个腺泡的胞外运输通道汇集到由单层细胞组成的丝腺导管。单层导管细胞靠近管腔外围具有规则排列的质膜内陷和大量伸长的线粒体;靠近管腔的一侧具连续的细胞膜突起,在导管壁的表皮下紧密排列。【结论】黑缘烟蟋螽丝腺分泌细胞分为Ⅰ型分泌细胞和Ⅱ型分泌细胞。分泌物质产生及分泌过程依次经过分泌细胞、腔细胞包围的胞外通道、分支导管、总导管和唾窦。其中在腺泡细胞之间,分泌物向外运输过程中,围细胞微绒毛腔的微丝束可能对分泌物的外排提供推动力。 相似文献
3.
The excretory duct of pyriform glands in Araneus diadematus is connected to the secretory sac through an intermediary cell ring. Apices of these cells bear thick, long microvilli and cytoplasmic extensions containing microtubules in bundles, some of which are derived from normal basal bodies. These finger-like extensions lie between the cuticular intima and the secretory product; they are thought to protect the intima and to initiate moulding of the silk thread. Structural features of the duct cells suggest that the latter play a role in the control of the water content of the silk glue which is restricted to the last portion of the duct where numerous nerve endings are inserted between cells. It is evident that duct structure and chemical and physical characteristics of silk are correlated in all spider silk glands. 相似文献
4.
Dallai R Lupetti P Giusti F Mercati D Paccagnini E Turillazzi S Beani L Kathirithamby J 《Tissue & cell》2004,36(3):211-220
Nassonow's gland consists of a number of cells with ducts that open on to the ventral surface of the brood canal in the cephalothoracic region of a neotenic female strepsipteran. The structural organization of the gland is reminiscent of the class 3 of the epidermal gland cells as defined by Noirot and Quennedey [Ann. Rev. Entomol. 19 (1974) 61], which consists of secretory and duct forming cells. The ultrastructure of the Nassonow's gland is described in female Xenos vesparum (Rossi) parasitic in the social wasp Polistes dominulus Christ. The large secretory cells are clustered in groups of three to four, rich in smooth endoplasmic reticulum and produce a secretion made up of lipids. In young females, just before mating, the ultrastructure of the cells and their inclusions indicate that they are active. In old-mated females the Nassonow's gland degenerates. Microvilli line an extracellular cavity and there are pores present in the irregularly thick cuticle of the efferent duct. The small duct forming cells, intermingle with epidermal cells, overlap secretory cells and produce a long efferent duct, the cuticle of which becomes thick close to its opening in the brood canal. Nassonow's gland could be the source of a sex pheromone, which might be capable of attracting the free-living male to a permanently endoparasitic female. 相似文献
5.
The ultrastructure of some integumental glands occurring in the head, thorax and abdomen of K. flavicollis soldiers is described. The secretory units consist of two cells, the canal cell and the secretory cell (this latter filled with secretion granules). A cylindrical and distorted extracellular space, or reservoir, with an irregular outline is lined by short microvilli. The end-apparatus is made up of small overlapping cuticular laminae which in section resemble small wavy rods. The ample distribution of the units has led the authors to consider them dermal glands. Scanning electron micrographs confirm that the glands' activity consists in the secretion of material which then spreads over the surface of the integument. The dissimilar appearance of the secretion granules present in glands of different soldiers suggests that the electron-lucid granules and the granules with fibrils are two completely different secretions at different ages of the animal. The authors do not therefore rule out the hypothesis that these integumental glands may later produce or release pheromones. 相似文献
6.
Billen, J., Gobin, B. & Ito, F. 1999. Fine structure of the postpygidial gland in Aenictus army ants. – Acta Zoologica (Stockholm) 80: 307–310
Army ants of the genus Aenictus are characterized by the presence of a conspicuous postpygidial gland, which is the source of the trail pheromone. The paired gland at each side consists of a reservoir sac into which the secretory cells open through their accompanying duct cells. The secretory cells are characterized by a well developed Golgi apparatus, numerous mitochondria and strands of smooth endoplasmic reticulum. The reservoir opens near the abdomen tip, which facilitates deposition of the secretory products onto the substrate. The large reservoir of the postpygidial gland may enable the incessant trail laying of at least one of the investigated species. 相似文献
Army ants of the genus Aenictus are characterized by the presence of a conspicuous postpygidial gland, which is the source of the trail pheromone. The paired gland at each side consists of a reservoir sac into which the secretory cells open through their accompanying duct cells. The secretory cells are characterized by a well developed Golgi apparatus, numerous mitochondria and strands of smooth endoplasmic reticulum. The reservoir opens near the abdomen tip, which facilitates deposition of the secretory products onto the substrate. The large reservoir of the postpygidial gland may enable the incessant trail laying of at least one of the investigated species. 相似文献
7.
WOJCIECH WITALIŃSKI 《Invertebrate reproduction & development.》2013,57(2):141-149
The spermatozoa of the mite, Parasitus niveus, are rod-shaped cells possessing a very elongated and zig-zag shaped nucleus. The cytoplasm is filled by so-called “striated bodies” and mitochondria. The plasmalemma forms five complicated structures, called stiff bands. In the peripheral cytoplasm lie flattened canaliculi and flattened cisternae. The morphology of the spermatozoa is compared with that of other mite spermatozoa described in the literature. 相似文献
8.
《Arthropod Structure & Development》2017,46(6):777-787
Trombidiform mites are characterized by the presence of several paired glands in the anterior body portion united by a common conducting duct (podocephalic canal). Apart from the acinous (salivary) glands the podocephalic system includes a pair of tubular coxal glands (CGs) responsible for osmoregulation. The aim of the present study was to figure out how functional changes of acinous glands reflect on the corresponding CG. For this purpose, the anatomy and fine structure of the CG were analyzed in two mite species, Bakericheyla chanayi and Ornithocheyletia sp. (Cheyletidae), which have a different composition of their single acinous gland.The results showed that in both species the CG lacks a filtering saccule. It is composed of the proximal and distal tubes and leads into a cuticle-lined excretory duct. Both tubes demonstrate a similar species-specific fine structure. They are characterized by an extensive system of apical membrane invaginations (internal canals) associated with numerous large mitochondria. Local areas of modified internal canals were regularly observed in both species. They contain structures resembling those constituting filtering slit diaphragms of other animals.In O. sp., CG cells in addition demonstrate features characteristic of protein-like secretion. Apparently this correlates with the loss of true salivary glands in this species, as its acinous gland was previously assumed as silk producing. Contrary to this, the CG of B. chanayi shows no kind of granulation, which coincides with the presence of a salivary portion in its complex acinous gland.The microtubule-rich intercalary cells at the base of the excretory duct were associated with special muscles presumably regulating the dilation of the duct lumen. These cells might represent a basic feature common to different types of podocephalic glands. 相似文献
9.
10.
The tegumental epithelium of the outer dorsolateral region in the proximal part of the coxae in the mid‐ and hindlegs of both workers and queens of the ants Odontomachus rixosus and O. simillimus is differentiated into a conspicuous and hitherto unknown exocrine gland. The glandular cells display a clear microvillar differentiation of their apical cell membrane, and are lined with the tegumental cuticle, which in this part contains crack‐like channels perpendicular to its surface, that carry the glandular secretions to the outside. Apical microvilli support the transport of substances, and contain an extension of tubular smooth endoplasmic reticulum in their centre. The function of the gland may be that of providing lubricant substances to the articulation region of the generally heavily sclerotized ponerine ant species. The gland is also found in several other ponerine and amblyoponine species, but not in the ectatommine species studied. The foreleg coxae lack a basicoxal gland in all species examined, which may be explained by the more limited articulation between the thorax and the coxae in the forelegs compared to the mid‐ and hindlegs. 相似文献
11.
Sericulture has been greatly advanced by applying hybrid breeding techniques to the domesticated silkworm, Bombyx mori, but has reached a plateau during the last decades. For the first time, we report improved silk yield in a GAL4/UAS transgenic silkworm. Overexpression of the Ras1(CA) oncogene specifically in the posterior silk gland improved fibroin production and silk yield by 60%, while increasing food consumption by only 20%. Ras activation by Ras1(CA) overexpression in the posterior silk gland enhanced phosphorylation levels of Ras downstream effector proteins, up-regulated fibroin mRNA levels, increased total DNA content, and stimulated endoreplication. Moreover, Ras1 activation increased cell and nuclei sizes, enriched subcellular organelles related to protein synthesis, and stimulated ribosome biogenesis for mRNA translation. We conclude that Ras1 activation increases cell size and protein synthesis in the posterior silk gland, leading to silk yield improvement. 相似文献
12.
Summary The salivary glands of the moth,Manduca sexta, are described, emphasizing correlations between structure and function in an attempt to explain the production of a dilute
saliva. Each of the paired glands consists of five distinct regions: protein secreting, fluid secreting, thin duct, bulbous
duct, and common duct. Each region constists of a single, ultrastructurally distinct, cell type. It is proposed that the protein
and fluid secreting regions produce an enzyme-containing primary saliva isosmotic with the haemolymph; this saliva is modified
in the remaining regions of the gland to yield a dilute saliva.
Acknowledgements. We thank Professor T. Weis-Fogh for accommodation in the Department of Zoology and Dr. J. E. Treherne for use of A.R.C.
facilities. We are especially grateful to Dr. Nancy Lane for encouragement, advice and critical comments and to Drs. M. J.
Berridge and S.H.P. Maddrell for helpful discussion. H.A.R. is grateful to Clare College, Cambridge for financial aid. 相似文献
13.
Fine structure of the male genital system of the predatory mite Rhagidia halophila (Rhagidiidae,Prostigmata, Actinotrichida) 下载免费PDF全文
The male genital system of the actinotrichid mite Rhagidia halophila is described and compared with other mites and arachnids. The large testes are composed of germinal and glandular parts and produce numerous small sperm cells. The glandular parts are connected via a testicular bridge. Spermiogenesis occurs in cysts containing spermatids in equal stages of development. Cysts of spermatids are embedded in huge somatic cells. The nuclei of the spermatids loose their envelope. Mature sperm cells are simple exhibiting a ring‐shaped chromatin body and lacking an acrosomal complex. They are most similar to the sperm cells of the related mite Linopodes motatorius. The spermatopositor contains the ejaculatory duct divided into a dorsal channel and a ventral channel that are connected via a narrow passage. At its distal end, the spermatopositor is divided into three eugenital lips. The function of the spermatopositor during deposition of the peculiar thread‐like spermatophores is discussed. Details of the sensilla of the spermatopositor and the progenital lips are reported. The genital papillae located on the inner side of the progenital lips exhibit characteristics of cells performing transport of ions and/or water. The results confirm the overall similarity of actinotrichid genital systems, which is profoundly different from that of anactinotrichid mites. With reference to other Arachnida it is corroborated that testes and sperm structure of Actinotrichida are most similar to that of Solifugae. However, synapomorphies between sperm cells of Rhagidia and Solifugae that could suggest a closer relationship between these two taxa as was suggested in earlier studies were not recognizable. On the contrary, the sperm cells of Rh. halophila being devoid of an acrosomal complex appeared to be more apomorphic than those of many other actinotrichid mites as well as Solifugae. J. Morphol. 276:832–859, 2015. © 2015 Wiley Periodicals, Inc. 相似文献
14.
We examined antennal exocrine glands in adults of a myrmecophagous carabid beetle, Siagona europaea Dejean 1826 (Coleoptera, Carabidae), by light and electron microscopy and we identified two types of integumentary glands. The first type includes glands formed by three cells (a secretory cell, an intercalary cell and a duct cell) known as class 3 of Noirot and Quennedey (1991). The secretory cell has several large multivesicular electron‐lucent bodies, indicating a glycoprotein product associated with lipids. We hypothesize that this secretion protects the surface of antennae and sensilla from wear. The second group of glands includes unicellular glands known as oenocytes (class 2 of Noirot and Quennedey, 1991), which secrete epicuticular hydrocarbons through epidermal cells. 相似文献
15.
An abdominal pheromone-producing gland in Atta sp. was examined using light and electron microscopy techniques. The gland is composed of a bunch of juxtaposed secretory units in which the secretory ductules open on to a cribellum close to the sting base.The structure and cycles of the secreting units are described. Each includes a secretory cell with an ‘end apparatus’, ductule cells and epidermal cells. The secretory cycle of glycoproteins accumulated in the ‘end apparatus’ is discussed and a functional interpretation of the morphological components of the application system is proposed. 相似文献
16.
Jisheng Li Yimei Cai Lupeng Ye Shaohua Wang Jiaqian Che Zhengying You Jun Yu Boxiong Zhong 《BMC genomics》2014,15(1)
Background
The growth and development of the posterior silk gland and the biosynthesis of the silk core protein at the fifth larval instar stage of Bombyx mori are of paramount importance for silk production.Results
Here, aided by next-generation sequencing and microarry assay, we profile 1,229 microRNAs (miRNAs), including 728 novel miRNAs and 110 miRNA/miRNA* duplexes, of the posterior silk gland at the fifth larval instar. Target gene prediction yields 14,222 unique target genes from 1,195 miRNAs. Functional categorization classifies the targets into complex pathways that include both cellular and metabolic processes, especially protein synthesis and processing.Conclusion
The enrichment of target genes in the ribosome-related pathway indicates that miRNAs may directly regulate translation. Our findings pave a way for further functional elucidation of these miRNAs and their targets in silk production.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-410) contains supplementary material, which is available to authorized users. 相似文献17.
Cocoons of Theridiosoma gemmosum consist of two main parts, the egg sac case and the stalk. The inner space of the egg sac case is filled with nonsticky flocculent silk. Measuring 600–800 nm in diameter, the flocculent threads are never made up of bundles of longitudinally oriented nanofibrils. The egg case wall consists of a lower layer of highly ordered threads and an upper layer of cover silk. The lower, permanently white layer consists of threads in a mesh‐like arrangement, the thicker threads being 4–6 μm and the thinner threads being 2–3 μm in diameter. Each thread is a bundle of parallel nanofibrils, with a diameter between 150 and 300 nm. The silk secretions of these fibers, emitted from spigots, are processed by legs. The upper layer of the egg case is applied to the threads of the lower layer by direct rubbing against its surface, i.e. without the use of legs. In the lower and middle part of the egg case, the accumulated secretion forms a virtually compact encrustation, whereas in the upper, conically shaped, part of the egg case where it becomes the stalk, this secretion becomes substantially scarcer. The stalk is a continuation of the egg case, its proximal part made of fibers similar to those forming the inner layer of the egg case wall. The distal part of the stalk continues towards the suspension area either as a compact bundle of parallel fibers, or the stalk forks into two bundles of roughly the same thickness, which continue towards the suspension area separately. On the surface of objects onto which cocoons are attached, the secretion of the piriform glands acts as an adhesive sheet. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc. 相似文献
18.
Eelen D., Børgesen L.W. and Billen J. 2006. Functional morphology of the postpharyngeal gland of queens and workers of the ant Monomorium pharaonis (L.). —Acta Zoologica (Stockholm) 87 : 101–111 The postpharyngeal gland (PPG) is unique to ants and is the largest exocrine gland in their head. In queens of the pharaoh's ant, Monomorium pharaonis, the gland contains approximately 15 finger‐like epithelial extensions on each side and opens dorsolaterally in the posterior pharynx. In these ants the PPG morphology varies considerably according to age and mating status. The epithelial thickness increases with age and reaches a maximum at 3 weeks in both virgin and mated queens. A considerable expansion of the lumen diameter occurs in both groups between 4 and 7 days. Virgin queens release their secretion into the gland lumen from an age of 7 days, whereas mated queens accumulate large amounts of secretion in their epithelium. The increasing epithelial thickness, together with the increasing lumen diameter, the presence of numerous inclusions in the epithelium and the release of secretion, are indicative for increasing gland activity. The gland ultrastructure indicates involvement in lipid metabolism and de novo synthesis of lipids. The PPG of workers consists of 12 finger‐like tubes at each side. There is a significant difference in epithelial thickness between nurses and repletes and between nurses and foragers. We suggest the PPG serves different purposes in pharaoh's ants: it is likely that the PPG of workers and virgin queens is used to feed larvae. In mated queens the gland probably plays a role in providing the queen with nutritious oils for egg production. The PPG may also function in signalling species nestmate and caste identity, as well as in the reproductive capacity of the queens. 相似文献
19.
Molecular studies of a novel dragline silk from a nursery web spider, Euprosthenops sp. (Pisauridae)
Pouchkina-Stantcheva NN McQueen-Mason SJ 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2004,138(4):169-376
Various spider species produce dragline silks with different mechanical properties. The primary structure of silk proteins is thought to contribute to the elasticity and strength of the fibres. Previously published work has demonstrated that the dragline silk of Euprosthenops sp. is stiffer then comparable silk of Nephila edulis, Araneus diadematus and Latrodectus mactans. Our studies of Euprosthenops dragline silk at the molecular level have revealed that nursery web spider fibroin has the highest polyalanine content among previously characterised silks and this is likely to contribute to the superior qualities of pisaurid dragline. 相似文献
20.
Summary The prosomal glands of Tetranychus urticae (Acari, Tetranychidae) were examined light and electron microscopically. Five paired and one unpaired gland are found both in females and males. The silk spinning apparatus consists of paired silk glands which extend laterally on both sides of the esophagus into the pedipalps. There, they enter the terminal silk gland bag which opens into a silk bristle at the apex of the pedipalps. The salivary secretions are formed in three paired glands which have an interconnecting duct, the podocephalic canal. The dorsal podocephalic glands may produce a serous secretion, the anterior podocephalic glands a mucous secretion, and the coxal organ may add a liquid, ion-rich secretion. These secretions pass the podocephalic canal and reach the mouth at the apex of the gnathosome. The function of the paired tracheal organs and the unpaired tracheal gland is still unclear. The tracheal gland may produce a secretion which facilitates the movement of the fused chelicerae and the stylets.This study was financed by a grant from the Deutsche Forschungsgemeinschaft (DFG Se 162/12) 相似文献