首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Through the microarray analysis, long noncoding RNA TPT1-AS1 (TPT1-AS1) was identified in the development of glioma. However, the specific effect of TPT1-AS1 on glioma autophagy in the recent years has not fully been investigated. Therefore, the purpose of our present study is to investigate the function of TPT1-AS1 on affecting autophagy of glioma cells through regulation of microRNA-770-5p (miR-770-5p)-mediated stathmin 1 (STMN1). Initially, the expression of TPT1-AS1, miR-770-5p, and STMN1 were determined in glioma cell lines, followed by the prediction and validation of their interaction. After that, the effects of TPT1-AS1, miR-770-5p, and STMN1 on the in vitro glioma cell proliferation and autophagy were assessed using EdU assay and macrophage-derived chemokine (MDC) and on the in vivo tumor development and autophagy were evaluated using a nude mouse xenograft tumor assay and immunofluorescence assay. In comparison with the normal cells, the glioma cells displayed upregulated expression of TPT1-AS1 and STMN1, but a downregulated miR-770-5p expression. miR-770-5p, which directly targeted STMN1, could be downregulated by TPT1-AS1. Subsequently, in glioma cells, TPT1-AS1 can function to competitively bind to miR-770-5p, thus regulatEing STMN1 expression. Moreover, glioma cell proliferation and autophagy could be mediated through the TPT1-AS1/miR-770-5p/STMN1 axis. From our data we conclude an inhibitory function of TPT1-AS1 in glioma cell autophagy by downregulating miR-770-5p and upregulating STMN1, which may be instrumental for the therapeutic targeting and clinical management of glioma.  相似文献   

2.
The aim of this study was to explore the relationship between the expression of HOXD antisense growth-associated long noncoding RNA (HAGLROS) and prognosis of patients with colorectal cancer (CRC), as well as the roles and regulatory mechanism of HAGLROS in CRC development. The HAGLROS expression in CRC tissues and cells was detected. The correlation between HAGLROS expression and survival time of CRC patients was investigated. Moreover, HAGLROS was overexpressed and suppressed in HCT-116 cells, followed by detection of cell viability, apoptosis, and the expression of apoptosis-related proteins and autophagy markers. Furthermore, the association between HAGLROS and miR-100 and the potential targets of miR-100 were investigated. Besides, the regulatory relationship between HAGLROS and PI3K/AKT/mTOR pathway was elucidated. The results showed that HAGLROS was highly expressed in CRC tissues and cells. Highly expression of HAGLROS correlated with a shorter survival time of CRC patients. Moreover, knockdown of HAGLROS in HCT-116 cells induced apoptosis by increasing the expression of Bax/Bcl-2 ratio, cleaved-caspase-3, and cleaved-caspase-9, and inhibited autophagy by decreasing the expression of LC3II/LC3I and Beclin-1 and increasing P62 expression. Furthermore, HAGLROS negatively regulated the expression of miR-100, and HAGLROS controlled HCT-116 cell apoptosis and autophagy through negatively regulation of miR-100. Autophagy related 5 (ATG5) was verified as a functional target of miR-100 and miR-100 regulated HCT-116 cell apoptosis and autophagy through targeting ATG5. Besides, HAGLROS overexpression activated phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. In conclusion, a highly expression of HAGLROS correlated with shorter survival time of CRC patients. Downregulation of HAGLROS may induce apoptosis and inhibit autophagy in CRC cells by regulation of miR-100/ATG5 axis and PI3K/AKT/mTOR pathway.  相似文献   

3.
Atherosclerosis (AS) is the main aetiology of coronary heart disease, cerebral infarction and peripheral vascular disease in humans. Long-noncoding RNA (LincRNA)-p21 has been reported to participate in the development of AS. Therefore, this study was designed to investigate the mechanism of LincRNA-p21 on suppressing the development of AS. We fed ApoE−/− mice with a high-fat diet to induce an AS mouse model where the lesion area of AS and the extent of lipid deposition were measured. The binding of LincRNA-p21 and miR-221 or miR-221 and SIRT1 was measured using a dual luciferase reporter gene assay and RIP. Following loss- and gain- function assays, CCK8, EdU, Transwell assay and scratch test were performed to determine the biological processes of human aortic endothelial cells (HAECs). miR-221 was highly expressed while SIRT1 was poorly expressed in AS. LincRNA-p21 acted as a sponge for miR-221. miR-221 targeted and negatively regulated the expression of SIRT1. LincRNA-p21 promoted the deacetylation of Pcsk9 by SIRT1 by competitively binding to miR-221, whereby promoting HAEC proliferation, migration and tube formation. In conclusion, LincRNA-p21 acted as a molecular sponge for miR-221 to promote deacetylation of the promoter region of Pcsk9 by SIRT1, therefore preventing the development of AS.  相似文献   

4.
Hepatocellular carcinoma (HCC) is a severe disease with high mortality in the world. It has been shown that long noncoding RNA (lncRNA) might play a role in HCC. The aim of the present study was to identify the role of long intergenic noncoding RNA 01551 (LINC01551) in the HCC development and explore the underlying mechanism of LINC01551/miR-122-5p/ADAM10 axis. The differentially expressed lncRNAs associated with HCC were screened out by a microarray analysis. The expression of LINC01551, miR-122-5p, and ADAM10 was determined in HCC tissues and cells. The potential miRNA (miR-122-5p) regulated by LINC01551 was explored, and the target relationship between miR-122-5p and ADAM10 was confirmed. To evaluate the effect of LINC01551 and miR-122-5p on proliferation, migration, invasion, and apoptosis of HCC, different plasmids were delivered into MHCC97-H cells. High expression of LINC01551 and ADAM10 yet low-expression of miR-122-5p were revealed in HCC tissues and cells. Overexpression of miR-122-5p could downregulate ADAM10. Biological prediction websites and fluorescence in situ hybridization assay verified that LINC01551 was mainly expressed in the cytoplasm. Silencing LINC01551 reduced HCC cell viability, proliferation, migration, invasion, and cell cycle entry yet induce cell apoptosis. Upregulation of LINC01551 increased its ability of competitively binding to miR-122-5p, thus reducing miR-122-5p and upregulating ADAM10 expression, as well as promoting the proliferative, migrative, and invasive ability. Taken together the results, it is highly possible that LINC01551 functions as an competing endogenous RNA (ceRNA) to regulate the miRNA target ADAM10 by sponging miR-122-5p and therefore promotes the development of HCC, highlighting a promising competitive new target for the HCC treatment.  相似文献   

5.
6.
7.
The diabetes mellitus (DM)-induced reduction of neurogenesis in the hippocampus is consequently accompanied by cognitive decline. The present study set out to define the critical role played by long noncoding RNA H19 (lncRNA H19) in the apoptosis of hippocampal neurons, as well as oxidative stress (OS) in streptozotocin (STZ)-induced DM mice through regulation of insulin-like growth factor 2 (IGF2) methylation. The expression of lncRNA H19 in the hippocampal neurons and surviving neurons were detected. Hippocampal neurons were cultured and transfected with oe-H19, sh-H19, oe-IGF2, or sh-IGF2, followed by detection of the expressions of IGF2 and apoptosis-related genes. Determination of the lipid peroxide and glutathione levels was conducted, while antioxidant enzyme activity was identified. The IGF2 methylation, the binding of lncRNA H19 to DNA methyltransferase, and the binding of lncRNA H19 to IGF2 promoter region were detected. DM mice exhibited high expressions of H19, as well as a decreased hippocampal neurons survival rate. Higher lncRNA H19 expression was found in DM. Upregulated lncRNA H19 significantly increased the expression of Bax and caspase-3 but decreased that of Bcl-2, thus promoting the apoptosis of hippocampal neuron. Besides, upregulation of lncRNA H19 induced OS. LncRNA H19 was observed to bind specifically to the IGF2 gene promoter region and promote IGF2 methylation by enriching DNA methyltransferase, thereby silencing IGF2 expression. Taken together, downregulated lncRNA H19 reduces IGF2 methylation and enhances its expression, thereby suppressing hippocampal neuron apoptosis and OS in STZ-induced (DM) mice.  相似文献   

8.
Gastric cancer continues to be a common cancer in the world with high incidence and mortality. Accumulating evidence has implicated long noncoding RNAs (lncRNAs) in gastric cancer progression. Here, this study identified the potential role of a novel lncRNA, LINC00629 in gastric cancer and to elucidate the underlying mechanism. Initially, microarray-based gene expression profiling of gastric cancer was employed to identify differentially expressed genes. Next, the expression of LINC00629, microRNA-196b-5p (miR-196b-5p) and aquaporin 4 (AQP4) in clinical gastric cancer tissues was determined and the cell line presenting with the lowest LINC00629 expression was selected. The interaction among LINC00629, miR-196b-5p, and AQP4 was identified. Expression of LINC00629, miR-196b-5p, and AQP4 in gastric cancer cells were altered and then biological behaviors of gastric cancer cells were assessed by 5-ethynyl-2′-deoxyuridine and Transwell assays. Tumor formation in vivo was evaluated in nude mice. In gastric cancer, expression of LINC00629 and AQP4 was downregulated, and expression of miR-196b-5p was upregulated. Proliferation, invasion, and migration of gastric cancer cells were reduced after overexpression of LINC00629. LINC00629 competitively bound to miR-196b-5p, while AQP4 was a target of miR-196b-5p. Either downregulating miR-196b-5p or upregulating AQP4 could restrain the development of gastric cancer in vitro. LINC00629 overexpression repressed the growth of transplanted tumors in vivo. Taken together, LINC00629 competitively bound to miR-196b-5p to upregulate AQP4 expression, thereby inhibiting gastric cancer progression. Therefore, understanding of this mechanism may help to improve gastric cancer treatment.  相似文献   

9.
Long noncoding RNAs (lncRNAs) have been implicated in the regulation of resistance to radiotherapy in cervical cancer, which is a type of gynecological disease with high mortality in women around the world. Hence, our purpose is to delineate the involvement of LINC00958 in regulating cell sensitivity to radiotherapy in cervical cancer. LINC00958 expression in cervical cancer was assayed, followed by verification of the relationship among LINC00958, microRNA-5095 (miR-5095) and ribonucleotide reductase subunit M2 (RRM2). Hela cells were transduced with up-/downregulation of miR-5095 or RRM2, or LINC00958 silencing, respectively, and then treated with or without a 6 Gy dose of X-ray irradiation. Then the cell proliferation, apoptosis, survival fraction rate, as well as sensitivity to radiotherapy, were assessed. Finally, xenograft tumor in nude mice was established by transplanting Hela cells transfected with sh-LINC00958 and irradiated with 6 Gy of X-ray. High expression of LINC00958 was revealed in The Cancer Genome Atlas and Gene Expression Profiling Interactive Analysis, as well as in radiation-resistant patients, which was associated with lower sensitivity to radiotherapy in cervical cancer. Moreover, cervical cancer patients with higher LINC00958 expression exhibited a shorter overall survival according to Kaplan–Meier analysis. In addition, LINC00958 could regulate the expression of RRM2 by competing for miR-5095. A combination of radiotherapy with LINC00958 silencing, RRM2 downregulation or miR-5095 overexpression was found to inhibit cervical cancer cell proliferation and tumor growth, while promoting cell apoptosis both in vitro and in vivo. Collectively, our results suggest that LINC00958 could regulate RRM2 by competing to miR-5095, which regulates cell sensitivity to radiotherapy in cervical cancer.  相似文献   

10.
Previous studies have revealed that long noncoding RNA (lncRNA) and microRNA play a crucial role in autism, which is a childhood neurodevelopmental disorder with complicated genetic origins. Hence, the study concerns whether lncRNA C21orf121/bone morphogenetic proteins 2 (BMP2)/miR-140-5p gene network affects directed differentiation of stem cells from human exfoliated deciduous teeth (SHED) to neuronal cells in rats with autism. Autism models were successfully established. The neuron cells that differentiated from SHED cell were identified. The expression of lncRNA C21orf121, miR-140-5p, BMP2, Nestin, βIII-tubulin, and microtubule-associated protein 2 (MAP2) and the expression of neuron-specific enolase (NSE) were examined. Besides, the gap junction (GJ) function of SHED, the intracellular free Ca 2+ concentration, and the social behavior and repetitive stereotyped movements of rats in autism were detected. The target relationship between lncRNA C21orf121 and miR-140-5p and that between miR-140-5p and BMP2 were also verified. Firstly, we successfully isolated SHED and identified the differentiated neurons of SHED. Besides, the expression of BMP2, MAP2, Nestin, βIII-tubulin, NSE positive rate, GJ function, and intracellular free Ca 2+ concentration were increased with the upregulation of C21orf121 and downregulation of miR-140-5p, and accumulated time of repetitive stereotyped movements decreased and the frequency of social behavior increased. The results indicate that lncRNA C21orf121 as a competing endogenous RNA competes with BMP2 binding to miR-140-5p, thereby promoting SHED to differentiate into neuronal cells via upregulating BMP2 expression.  相似文献   

11.
Protein regulator of cytokinesis 1 (PRC1) has been reported in correlation with various malignancies. Functionality of PRC1 in nasopharyngeal carcinoma (NPC) was investigated, in perspective of long noncoding RNA (lncRNA) regulatory circuitry. Aberrant expressed messenger RNA and lncRNA were screened out from the Gene Expression Omnibus microarray database. NPC cell line CNE-2 was adopted for in vitro study and transfected with mimic or short hairpin RNA of miR-194-3p and PTPRG-AS1. The radioactive sensitivity, cell viability, migration, invasion, and apoptosis were detected. PTPRG-AS1 and PRC1 were upregulated in NPC, whereas miR-194-3p was downregulated. PTPRG-AS1 was found to specifically bind to miR-194-3p as a competing endogenous RNA and miR-194-3p targets and negatively regulates PRC1. Overexpressed miR-194-3p or silenced PTPRG-AS1 resulted in enhanced sensitivity to radiotherapy and cell apoptosis along with suppressed cell migration, invasion and proliferation in NPC. Furthermore, impaired tumor formation was also caused by miR-194-3p overexpression or PTPRG-AS1 suppression through xenograft tumor in nude mice. In our study, PTPRG-AS1/miR-194-3p/PRC1 regulatory circuitry was revealed in NPC, the mechanism of which can be of clinical significance for treatment of NPC.  相似文献   

12.
Long noncoding RNAs (lncRNAs) have been recognized as cancer-associated biological molecules, favoring hepatocellular carcinoma (HCC) progression. This study was conducted to elucidate the effects lncRNA lymphoid enhancer-binding Factor 1 antisense RNA (LEF1-AS1) on the pathological development of HCC, along with the crosstalk involving microRNA-136-5p (miR-136-5p) and with-no-K (lysine) kinase 1 (WNK1). The study recruited primary HCC tissues and their corresponding nonneoplastic liver tissues. The gain- and loss-of-function studies were performed in HCC cells HuH-7 and tumor xenografts in nude mice. The dual luciferase reporter gene assay system, RNA pull-down, and radioimmunoprecipitation assays were applied to detect their interactions among lncRNA LEF1-AS1, miR-136-5p, and WNK1. 5-Ethynyl-2′-deoxyuridine staining, scratch test, Transwell assays, and in vitro tube formation assays were conducted to examine HCC cell proliferation, migration, and invasion and HUVEC angiogenesis. HCC tissues and cells contained high lncRNA LEF1-AS1 expression. LncRNA LEF1-AS1 upregulation triggered markedly increased HCC cell proliferation, migration, and invasion and human umbilical vein endothelial cell angiogenesis. In vivo silencing lncRNA LEF1-AS1 resulted in reduced tumor cell vitality and matrix metalloproteinase-9 and the vascular endothelial growth factor expression. Additionally, the role of lncRNA LEF1-AS1 was found to be largely dependent on WNK1. Association of lncRNA LEF1-AS1 with WNK1 blocked the inhibitory effect of miR-136-5p on WNK1, which was confirmed by in vivo experiments. Altogether, our results revealed an important role of lncRNA LEF1-AS1 in regulating the HCC progression by regulating WNK1, providing a potential biomarker for the therapeutic modalities regarding HCC.  相似文献   

13.
14.
Breast cancer is the most commonly diagnosed cancer that affects women worldwide. This study aimed to investigate the competing endogenous RNAs (ceRNAs) mechanism in breast cancer. Microarray data were downloaded from the University of California Santa Cruz (UCSC) Xena database. The limma package was used to screen the differentially expressed messenger RNAs (DEMs) and differentially expressed long noncoding RNAs (DELs). Subsequently, functional analysis was performed using DAVID tool. After constructing the protein-protein interaction (PPI) network, we identified the major gene modules using the Cytoscape software. Univariate survival analysis in the survival package was performed. Finally, the ceRNA regulatory network was constructed to identify the critical genes. A total of 1380 DEMs and 345 DELs were identified in breast cancer samples compared with normal samples. Functional enrichment analysis showed that DEMs were mainly involved in cell division, and cell cycle. We screened four major gene modules and identified the hub nodes in these functional modules. Several DEMs (including FABP7, C4BPA, and LAMB3) and three long noncoding RNAs (lncRNAs) (LINC00092, SLC26A4.AS1, and COLCA1) exhibited significant correlation with patients' survival outcomes. In the ceRNA network, the lncRNA HOXA-AS2 regulated the expression level of SCN3A by interacting with hsa-miR-106a-5p. Thus, our study investigated the ceRNA mechanism in breast cancer. The results showed that lncRNA HOXA-AS2 might modulate the expression of SCN3A by sponging miR-106a in breast cancer.  相似文献   

15.
16.
Breast cancer (BCa) is the most common malignant tumor in females. Long noncoding RNAs (lncRNAs) are deregulated in many types of human cancers, including BCa. The purpose of the present study was to examine the expression profile and biological role of HOXD cluster antisense RNA 1 (HOXD-AS1) in BCa. Our results revealed that HOXD-AS1 was upregulated in BCa tissues and cell lines, and high HOXD-AS1 expression was correlated with aggressive clinicopathological characteristics of BCa patients. Further gain-of-function and loss-of-function analysis showed that HOXD-AS1 overexpression promoted, whereas HOXD-AS1 knockdown inhibited BCa cell proliferation, cell cycle progression, migration, and invasion, indicating that HOXD-AS1 may function as a novel oncogene in BCa. Mechanistically, HOXD-AS1 could activate epithelial-mesenchymal transition (EMT) in BCa cells. We further proved that HOXD-AS1 might serve as a competing endogenous RNA of miR-421 in BCa cells, and miR-421 was downregulated and negatively correlated with HOXD-AS1 expression in BCa tissues. Besides, we confirmed that SOX4, a master regulator of EMT, was a direct target gene of miR-421. Further, rescue experiments suggested that miR-421 overexpression partly abrogated the oncogenic role of HOXD-AS1 in BCa cells. Therefore, we shed light on that HOXD-AS1/miR-421/SOX4 axis may be considered as a novel therapeutic target for the treatment of BCa patients.  相似文献   

17.
Pancreatic cancer (PC) is a great health burden to patients owing to its poor overall survival rate. Long noncoding RNAs (lncRNAs) interact with microRNAs (miRs) to participate in tumorigenesis. Therefore, we aim to uncover the role and related mechanism of LINC00473 in PC through the modulation of miR-195-5p and programmed death-ligand 1 (PD-L1). Increased LINC00473 and PD-L1 but declined miR-195-5p were determined in PC tissues and cell lines, and it was found that LINC00473 mainly situated in the cytoplasm. Also, miR-195-5p was verified to bind with both LINC00473 and PD-L1. Next, with the aim to examine the ability of LINC00473, miR-195-5p, and PD-L1 on the PC progression, the expression of LINC00473, miR-195-5p and PD-L1 were altered with mimics, inhibitors, overexpression vectors or siRNAs in PC cells and cocultured CD8+ T cells. It was demonstrated that LINC00473 sponged miR-195-5p to upregulate PD-L1 expression. More important, the obtained results revealed that LINC00473 silencing or miR-195-5p upregulation elevated the expression of Bcl-2 associated X protein (Bax), interferon (IFN)-γ, and interleukin (IL)-4 but reduced the expression of B-cell lymphoma-2 (Bcl-2), matrix metalloproteinase (MMP)-2, MMP-9, and IL-10, thus inducing the enhancement of the apoptosis as along with the inhibition of proliferation, invasion, and migration of the PC cells. LINC00473 silencing or miR-195-5p elevation activated the CD8+ T cells. Taken together, LINC00473 silencing blocked the PC progression through enhancing miR-195-5p-targeted downregulation of PD-L1. This finding offers new therapeutic options for treating this devastating disease.  相似文献   

18.
19.
20.
Long non-coding RNAs (lncRNA) have been demonstrated to act as essential regulators in the development and progression of breast cancer. In our study, we found that long noncoding RNA SNHG15 was highly expressed in breast cancer tissues and cell lines. And the expression of SNHG15 was correlated with TNM stage, lymphnode metastasis and survival in breast cancer patients. SNHG15 knockdown significantly inhibited the proliferation and induced apoptosis in breast cancer cells in vitro and in vivo. Besides, SNHG15 downregulation suppressed cell migration and invasion in MCF-7 and BT-20 cells, and inhibited epithelial-mesenchymal transition (EMT). In mechanism, we found that SNHG15 acted as a competing endogenous RNA to sponge miR-211-3p, which was downregulated in breast cancers and inhibited cell proliferation and migration. Our results showed that there was a negative correlation between SNHG15 and miR-211-3p expression in breast cancer patients. Collectively, we, for the first time, revealed the functions of SNHG15 and miR-211-3p in breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号