首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Acquisition of field data and analytical methods needed for conservation and management of wildlife populations represent significant challenges, particularly for species that inhabit landscapes that are difficult to access or species that persist in small, isolated populations. In such instances, integrating diverse and complementary data streams, such as genetic and non-genetic data, can advance our understanding of population dynamics and associated management implications. We examined how genetic and morphologic data can be used to articulate population structure of a low-density, peninsular population of mountain goats (Oreamnos americanus) on the Cleveland Peninsula, Alaska, USA, and surrounding areas, 2005–2018. We then use a population demographic modeling approach to examine how the use of population structure information influences sustainable harvest quotas, as compared to a panmictic, null model. Specifically, we conducted extensive field sampling of genetic (n = 446) and morphologic (i.e., horn length, n = 371) data to characterize population structure. We conducted demographic analyses and examined harvest modeling scenarios using a sex- and age-specific matrix population modeling approach. Genetic and morphologic data analyses suggested peninsular subpopulations were demographically isolated, relative to surrounding mainland populations. Specifically, genetic structuring was evident and followed an isolation-by-distance, stepping-stone pattern indicating limited interchange, low effective population sizes, and reduced genetic diversity along a peninsular extremity to mainland gradient. Harvest modeling indicated that overharvest would likely occur if the panmictic, null model was used to guide harvest because the smallest genetically defined population at the peninsular extremity was too small to permit any level of sustainable harvest. Our analyses illustrate the importance of using genetic and morphologic data, in combination with demographic modeling, to quantitatively delineate population boundaries and dynamics for ensuring viability of small, isolated populations. © 2020 The Wildlife Society.  相似文献   

2.
Managers rely on accurate estimators of wildlife abundance and trends for management decisions. Despite the focus of contemporary wildlife science on developing methods to improve inference from wildlife surveys, legacy datasets often rely on index counts that lack information about the detection process. Data integration can be a useful tool for combining index counts with data collected under more rigorous designs (i.e., designs that account for the detection process), but care is required when datasets represent different population processes or are mismatched in space and time. This can be particularly problematic in cases where animals aggregate in response to a spatially or temporally limited resource because individuals may temporarily immigrate from outside the study area and be included in the abundance index. Abundance indices based on brown bear (Ursus arctos) feeding aggregations within coastal meadows in early summer in Lake Clark National Park and Preserve, Alaska, USA, are one such example. These indices reflect the target population (brown bears residing within the park) and temporary immigrants (i.e., bears drawn from outside the park boundary). To properly account for the effects of temporary immigration, we integrated the index data with abundance data collected via park-wide distance sampling surveys, the latter of which properly addressed the detection process. By assuming that the distance data provide inference on abundance and the index counts represent some combination of abundance and temporary immigration processes, we were able to decompose the relative contribution of each to overall trend. We estimated that the density of brown bears within our study area was 38–54 adults/1,000 km2 during 2003–2019 and that abundance increased at a rate of approximately 1.4%/year. The contribution of temporary immigrants to overall trend in the index was low, so we created 3 hypothetical scenarios to more fully demonstrate how the integrated approach could be useful in situations where the composite trend in meadow counts may obscure trends in abundance (e.g., opposing trends in abundance and temporary immigration). Our work represents a conceptual advance supporting the integration of legacy index data with more rigorous data streams and is broadly applicable in cases where trends in index values may represent a mixture of population processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号