首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The first biplanar X-ray motion analysis of mastication and food processing for Castor fiber is presented. While particles are chipped off interaction of incisors involves variable movements of the lower mandible and thus incisors. After jaw opening the tip of the lower incisors can reach different positions anteriorly of the upper incisors. Then the mandible moves upwards and backwards and brings the tips of the incisors into contact. The lower incisors slide along the wear facet of the upper to the ledge when the cheek teeth occlude. The glenoid fossa and lower jaw condyle are in close contact during incisor contact and no transverse movements are observed. Mastication involves interaction of the cheek teeth with no contact of the incisors. When the cheek teeth are in occlusal contact the mandible is moved forward and transverse, or mediolateral. In consecutive power strokes the jaw is moved alternately to the right and left side. When the jaw opens it is brought into a more central but not totally centred position. During mastication the condyles are positioned posteriorly to the glenoid allowing lateral movement of the mandible. The lateral movement is particularly noticeable in the anterior part of the mandible. With the lateral movements of the incisors one glenoid has to move posteriorly, the other anteriorly.  相似文献   

2.
The anatomy of the masticatory apparatus, and particularly of the mandibular joints, has led to the view that mandibular movement in the Rodentia is predominantly propalinal, or forwards and backwards in direction. As part of an investigation into the mechanism of function of the mandibular joints in these animals, the feeding behaviour of "August" strain and "Wistar" rats was examined by cinephotography and cinefluorography. The rats were trained to feed on barium sulphate impregnated biscuit and animal cake and to drink radio-opaque liquids. Cinefluorographic recordings of ingestion, mastication, deglutition and of drinking were taken in both the lateral and dorso-ventral projections.
Analysis of the recordings has shown a fundamental separation of ingestive and masticatory activity in the rat, which can be attributed to the morphology of the jaws and particularly to the disparity in the lengths of the mandibular and maxillary diastemas. To bring the incisor teeth into occlusion for ingestion, the mandible is brought forward through the rest position and the condyle into articulation with the anterior part of the fossa. In mastication the condyle is moved backwards to bring the molar teeth into occlusion and the condyle into articulation with the posterior articular facet on the fossa. Once the mandible has been moved into the appropriate position for either ingestion or mastication and deglutition, the movements involved in the separation or chewing of the food are cyclical with combined horizontal and transverse movements as well as the fundamental vertical movement acting to open and close the mouth. The basic movement of ingestion carries the mandibular incisors upwards and forwards across the lingual surfaces of the maxillary incisors, so separating the bite. The grinding stroke of mastication is a horizontal movement carrying the mandibular molars anteriorly across the maxillary.  相似文献   

3.
Correlations between dental morphology, arch configuration, and jaw movement patterns were quantitatively investigated in 23 ceboid species to elucidate integrative aspects of occlusal functional anatomy in an adaptive and evolutionary context. Differential maxillary-mandibular arch widths are primary in guiding lateral jaw movements. These movements are characterized according to their associated condylar shifts as either predominantly translatory or rotational. Predominantly translatory movements result from peripheral contact relationships between maxillary arches which are considerably wider posteriorly than their opposing mandibular arches. The greatest degree of mandibular movement is in the molar region in functional association with wide “primitive” maxillary molars, narrow mandibular molars, constricted maxillary intercanine widths, and narrow maxillary incisors. In contrast, predominantly rotational masticatory jaw movements result from differential arch widths which are greatest in the maxillary canine and incisor regions. Here most jaw movement is in the anterior segment and this is reflected in small maxillary-mandibular molar width differences, a high degree of premolarization, wide-set maxillary canine teeth, and wide maxillary incisors. Possible selectional factors in the putative evolution of rotational predominance in mastication from the more primitive translatory pattern are discussed.  相似文献   

4.
Many habitual human jaw movements are non-symmetrical. Generally, it is observed that when the lower incisors move to one side the contralateral condyle moves forwards onto the articular eminence, whereas the ipsilateral condyle stays in the mandibular fossa, moving slightly to the ipsilateral side. These jaw movements are the result of contractions of active masticatory muscles and guided by the temporomandibular joints, their ligaments and passive elastic properties of the muscles. It is not known whether the movements are primarily dependent on passive guidance, active muscle control or both. Therefore, the objective of this study was to analyse the interplay between these factors during non-symmetrical jaw movements. A six-degrees-of-freedom dynamical biomechanical model of the human masticatory system was used. The movements were not restricted to a priori defined joint axes. Jaw movement simulations were performed by unilateral activity of the muscles. The ligaments or the passive elastic properties of the muscles could be removed during these simulations. Laterodeviations conform to naturally observed ones could be generated by unilateral muscle contractions. The movement of the lower incisors was hardly affected by the absence of passive elastic muscle properties or temporomandibular ligaments. The latter, however, influenced the movement of the condyles. The movements could be understood by analysing the combination of forces and torques with respect to the centre of gravity of the lower jaw. In addition, the loading of the condyles appeared to be an important determinant for the movement. This analysis emphasizes that the movements of the jaw are primarily dependent on the orientation of the contributing muscles with respect to this centre of gravity and not on the temporomandibular ligaments or passive elastic muscle properties.  相似文献   

5.
The arrangement of the musculature and connective tissues of the buccal mass of the coleoid cephalopods Octopus bimaculoides, Sepia officinalis, and Loliguncula brevis was examined using dissection and histology. Serial sections in three mutually perpendicular planes were used to identify the muscles and connective tissues responsible for beak movements and stability and to describe their morphology and fiber trajectories. Four major beak muscles were identified: the anterior, posterior, superior, and lateral mandibular muscles. The anterior, posterior, and superior mandibular muscles connect the upper beak and the lower beak. Although the lateral mandibular muscles originate on the upper beak, they do not connect to the lower beak and instead insert on a connective tissue sheath surrounding the buccal mass. Examination of the fibers of the lateral mandibular muscles reveals that they have the organization of a muscular hydrostat, with muscle fibers oriented in three mutually perpendicular orientations. Although the beaks are capable of complex opening, closing, and shearing movements, they do not contact one another and are instead connected only by the musculature of the buccal mass. Based on the morphological analysis and observations of freshly dissected beaks undergoing the stereotyped bite cycle, the functional role of the beak muscles is hypothesized. The anterior and superior mandibular muscles are likely responsible for beak closing and shearing movements. The posterior mandibular muscle is likely also involved in beak closing, but may act synergistically with the lateral mandibular muscles to open the beaks. The lateral mandibular muscles may use a muscular-hydrostatic mechanism to control the location of the pivot between the beaks and to generate the force required for beak opening. The lack of contact between the beaks and the morphology of the lateral mandibular muscles suggests that the buccal mass of coleoid cephalopods may represent a previously unexamined flexible joint mechanism. The term "muscle articulation" is proposed here to denote the importance of the musculature in the function of such a joint.  相似文献   

6.
The surface of the maxillary and mandibular incisors of Spermophilus undulatus long-tailed ground squirrels, including those born in the current year and those that have hibernated (trapped one month or later after hibernation) is studied. The presence of daily growth increments on the incisors’ surface allows the evaluation of the eruption rate of the incisors; a specific change in the character of the growth increments corresponds to winter hibernation (hibernation zone), which serves as the time mark. Ratio between the eruption rates of the maxillary and mandibular incisors typical for rodents is found in young-of-the-year and some animals after hibernation. In these animals the eruption rate of the mandibular incisors is higher than the eruption rate of the maxillary incisors and can be taken as proportional to their length. In individuals that have hibernated and show proportional eruption of the incisors, the proportions of the total length of the incisor formed before hibernation zone are equal for the maxillary and mandibular incisors. In the individuals that also have hibernated and show the ratio between the total length of the maxillary and mandibular incisors typical for rodents, the eruption rate of the mandibular incisor is equal to or less than the eruption rate of the maxillary incisor and the proportion of the incisor formed before hibernation is greater in the mandibular incisor than in the maxillary. This disproportionate pattern of incisor eruption is not typical for rodents and is a result of inequal attrition of the maxillary and mandibular incisors, which ultimately results in the normal ratio of the total length of the maxillary and mandibular incisors.  相似文献   

7.
Beavers are well-known for their ability to fell large trees through gnawing. Yet, despite this impressive behavior, little information exists on their masticatory musculature or the biomechanics of their jaw movements. It was hypothesized that beavers would have a highly efficient arrangement of the masticatory apparatus, and that gnawing efficiency would be maintained at large gape. The head of an American beaver, Castor canadensis, was dissected to reveal the masticatory musculature. Muscle origins and insertions were noted, the muscles were weighed and fiber lengths measured. Physiological cross-sectional areas were determined, and along with the muscle vectors, were used to calculate the length of the muscle moment arms, the maximum incisor bite force, and the proportion of the bite force projected along the long axis of the lower incisor, at occlusion and 30° gape. Compared to other sciuromorph rodents, the American beaver was found to have large superficial masseter and temporalis muscles, but a relatively smaller anterior deep masseter. The incisor bite force calculated for the beaver (550–740 N) was much higher than would be predicted from body mass or incisor dimensions. This is not a result of the mechanical advantage of the muscles, which is lower than most other sciuromorphs, but is likely related to the very high percentage (>96 %) of bite force directed along the lower incisor long axis. The morphology of the skull, mandible and jaw-closing muscles enable the beaver to produce a very effective and efficient bite, which has permitted beavers to become highly successful ecosystem engineers.  相似文献   

8.
Analysis of synchronously recorded cine-radiographs and electromyograms in two rodents (Aplodontia rufa and Marmota monax) demonstrates that jaw movements and muscle activiteis during incisal functions are distinctly different from those found during mastication. Movements during incisal biting are primarily along the midline, accompanied by symmetrical activity of the jaw adductor muscles. Most biting cycles do not end in contact between upper and lower incisors. When contact does occur, the lower incisors are dragged along the lingual surfaces of the upper incisors. Cropping, or tip-to-tip occlusion of upper and lower incisors, was not observed. Sharpening of the lower incisors, a behavior which may be unique to the Rodentia, was recorded in both A. rufa and M. monax. During sharpening, the lingual surface of the lower incisor is dragged across the tip of the upper incisor producing a lingual wear facet. Like incisal biting, sharpening movements are primarily confined to the midline, although there may be lateral movements in some sharpening cycles. Sharpening cycles are among the most rapid cyclic movements recorded in mammals, as the mean frequencies of sharpening are 11 cycles/s in A. rufa and 8 cycles/s in M. monax. © 1995 Wiley-Liss, Inc.  相似文献   

9.
10.
The masticatory apparatus in the albino rat was studied by means of electromyography and subsequent estimation of muscular forces. The activity patterns of the trigeminal and suprahyoid musculature and the mandibular movements were recorded simultaneously during feeding. The relative forces of the individual muscles in the different stages of chewing cycles and biting were estimated on the basis of their physiological cross sections and their activity levels, as measured from integrated electromyograms. Workinglines and moment arms of these muscles were determined for different jaw positions. In the anteriorly directed masticatory grinding stroke the resultants of the muscle forces at each side are identical; they direct anteriorly, dorsally and slightly lingually and pass along the lateral side of the second molar. Almost the entire muscular resultant force is transmitted to the molars while the temporo-mandibular joint remains unloaded. A small transverse force, produced by the tense symphyseal cruciate ligaments balances the couple of muscle resultant and molar reaction force in the transverse plane. After each grinding stroke the mandible is repositioned for the next stroke by the overlapping actions of three muscle groups: the pterygoids and suprahyoids produce depression and forward shift, the suprahyoids and temporal backward shift and elevation of the mandible while the subsequent co-operation of the temporal and masseter causes final closure of the mouth and starting of the forward grinding movement. All muscles act in a bilaterally symmetrical fashion. The pterygoids contract more strongly, the masseter more weakly during biting than during chewing. The wide gape shifts the resultant of the muscle forces more vertically and moreposteriorly. The joint then becomes strongly loaded because the reaction forces are applied far anteriorly on the incisors. The charateristic angle between the almost horizontal biting force and the surface of the food pellet indicates that the lower incisors produce a chisel-like action. Tooth structure reflects chewing and biting forces. The transverse molar lamellae lie about parallel to the chewing forces whereas perpendicular loading of the occlusal surfaces is achieved by their inclination in the transverse plane. The incisors are loaded approximately parallel to their longitudinal axis, placement that avoids bending forces during biting. It is suggested that a predominantly protrusive musculature favors the effective force transmission to the lower incisors, required for gnawing. By grinding food across transversely oriented molar ridges the protrusive components of the muscles would be utilized best. From the relative weights of the masticatory muscles in their topographical relations with joints, molars and incisors it may be concluded that the masticatory apparatus is a construction adapted to optimal transmission of force from muscles to teeth.  相似文献   

11.
It is of interest to document data on morphometric (measurement of external form) analysis of maxillary and mandibular anterior teeth collected from a dental set up using mesio-distal (MD) dimension. The mesiodistal dimensions of all permanent anterior teeth (central incisor, lateral incisor and canine) of 25 males and 25 females patients were recorded using digital vernier calipers. Data were charted and statistical analysis was done using Mann Whitney U test. Data shows sexual dimorphism for every tooth between males and females. However, dimorphism was exhibited only in maxillary and mandibular canine, mandibular central incisors, and lateral incisor. Hence,odontometric parameters offer simple, reliable and cost-effective in forensic investigation for recording gender discrimination.  相似文献   

12.
Naked mole-rats are eusocial mammals that live in colonies with a single breeding female and one to three breeding males. All other members of the colony, known as subordinates, are nonreproductive and exhibit few sex differences in behavior or genital anatomy. This raises questions about the degree of sexual differentiation in subordinate naked mole-rats. The striated perineal muscles associated with the phallus [the bulbocavernosus (BC), ischiocavernosus (IC), and levator ani (LA) muscles], and their innervating motoneurons, are sexually dimorphic in all rodents examined to date. We therefore asked whether perineal muscles and motoneurons were also sexually dimorphic in subordinate naked mole-rats. Muscles similar to the LA and IC of other rodents were found in naked mole-rats of both sexes. No clear BC muscle was identified, although a large striated muscle associated with the urethra in male and female naked mole-rats may be homologous to the BC of other rodents. There were no sex differences in the volumes of the LA, IC, or the urethral muscles. Motoneurons innervating the perineal muscles were identified by retrograde labeling with cholera-toxin-conjugated horseradish peroxidase. All perineal motoneurons were found in a single cluster in the ventrolateral lateral horn, in a position similar to that of Onuf's nucleus of carnivores and primates. There was no sex difference in the size or number of motoneurons in Onuf's nucleus of naked mole-rats. Thus, unlike findings in any other mammal, neither the perineal muscles nor the perineal motoneurons appear to be sexually differentiated in subordinate naked mole-rats.  相似文献   

13.
There are two main (but not mutually exclusive) methods by which subterranean rodents construct burrows: chisel-tooth digging, where large incisors are used to dig through soil; and scratch digging, where forelimbs and claws are used to dig instead of incisors. A previous study by the authors showed that upper incisors of chisel-tooth diggers were better adapted to dig but the overall cranial morphology within the rodent sample was not significantly different. This study analyzed the lower incisors and mandibles of the specimens used in the previous study to show the impact of chisel-tooth digging on the rodent mandible. We compared lower incisors and mandibular shape of chisel-tooth digging rodents with nonchisel-tooth digging rodents to see if there were morphological differences between the two groups. The shape of incisors was quantified using incisor radius of curvature and second moment of area (SMA). Mandibular shape was quantified using landmark based geometric morphometrics. We found that lower incisor shape was strongly influenced by digging group using a Generalized Phylogenetic ancova (analysis of covariance). A phylogenetic Procrustes anova (analysis of variance) showed that mandibular shape of chisel-tooth digging rodents was also significantly different from nonchisel-tooth digging rodents. The phylogenetic signal of incisor radius of curvature was weak, whereas that of incisor SMA and mandibular shape was significant. This is despite the analyses revealing significant differences in the shape of both mandibles and incisors between digging groups. In conclusion, we showed that although the mandible and incisor of rodents are influenced by function, there is also a degree of phylogenetic affinity that shapes the rodent mandibular apparatus.  相似文献   

14.
Myofiber properties of mouse mylohyoid muscle in the growth period   总被引:1,自引:0,他引:1  
  相似文献   

15.
The aim of the study was to investigate the range of mandibular movements and to analyze the difference in range of mouth opening, right and left lateral movements, and protrusive movement between patients with clinical diagnoses of temporomandibular disorders and asymptomatic subjects (control group) in a young male population. A total of 240 subjects, aged 19-28, were included in the study. The TMD sample comprised 180 patients (60 patients with muscle disorders; 60 patients with disc displacement with reduction; and 60 patients with muscle disorders and disc displacement with reduction) and was compared with 60 healthy control subjects. All participants were evaluated by the attending dentists at baseline by means of a physical examination of the masticatory system and a history questionnaire which included the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) Axis I measures. Analysis of variance (ANOVA) with the post hoc Bonferroni criteria showed significant difference in ranges of mandibular movements between and within the groups of asymptomatic subjects and TMD patients for active mouth opening (p = 0.001), right lateral movement (p = 0.002), left lateral movement (p = 0.006), and protrusive movement (p = 0.05). It has been found that there are statistically significant differences in the range of mandibular movements that separate asymptomatic subjects and patients with muscle disorders and disc displacements with reduction in this young male population. However, we cannot conclude that measurements of active mandibular movements can discriminate one group (TMD patients) from the other (asymptomatic subjects), because the mean ranges of these active movements between the groups were measured in clinically "normal" values.  相似文献   

16.
Signals derived from the autonomic nervous system exert potent effects on osteoclast and osteoblast function. A ubiquitous sympathetic and sensory innervation of all periosteal surfaces exists and its disruption affects bone remodeling. Several neuropeptides, neurohormones and neurotransmitters and their receptors are detectable in bone. Bone mineral content decreased in sympathetically denervated mandibular bone. When a mechanical stress was superimposed on mandibular bone by cutting out the lower incisors, an increase in bone density ensued providing the sympathetic innervation was intact. A lower eruption rate of sympathetically denervated incisors at the impeded eruption side, and a higher eruption rate of denervated incisors at the unimpeded side were also observed. A normal sympathetic neural activity appears to be a pre-requisite for maintaining a minimal normal unimpeded incisor eruption and for keeping the unimpeded eruption to attain abnormally high velocities under conditions of stimulated incisor growth. These and other results suggest that the sympathetic nervous system plays an important role in mandibular bone metabolism.  相似文献   

17.
In chimpanzees, the cutting edge of the incisor battery is longer in relation to the length of the molar row than in any other hominoid, extant or fossil, the only other lineage approaching it being the orangutan. Apart from their increased mesio-distal dimensions, the upper and lower incisors of chimpanzees differ in additional ways from those of almost all other hominoids. The I2/ is enlarged, so that the difference in size between it and the central upper incisor is less than it is in the heteromorphic upper incisors of other hominoids. The lower incisors are expanded mesio-distally, so much so that isolated I/2 crowns can resemble upper central incisors. In chimpanzees the lingual surface of the lower incisors is generally more procumbent than it is in other hominoids, which have more vertically oriented incisor crowns and there is a greater difference in enamel thickness between labial and lingual sides. The re-orientation of the lower incisor crown is reflected in the root, which in lateral view is anteriorly concave in chimpanzees whereas it is more orthogonal or convex in other hominoids. The molars of chimpanzees, especially the lowers, have extensive and relatively deep occlusal basins, and the main cusps are peripheralised and labio-lingually compressed, making them more trenchant than those of other hominoids. This paper examines the incisor-lower molar proportions in extinct and living hominoids and develops a new hypothesis about the evolution of the dentition of chimpanzees and links it to their diet. It also examines the incisor-molar proportions of hominids and African apes in order to throw light on the phylogenetic relationships between them. It is shown that chimpanzees are highly derived in this respect and that several recent ideas concerning the chimp-like appearance of the last common ancestor of hominids and African apes are likely to be incorrect.This revised version was published online in April 2005 with corrections to the cover date of the issue.  相似文献   

18.
The movements of the isolated buccal mass of Octopus vulgaris have been investigated. The beaks undergo rhythmic cycles of activity in the absence of applied stimulation and after electrical stimulation of the inter-buccal connective. Initial opening, closing, retraction and re-opening phases of movement are described. This cycle of movements is taken to resemble those in the intact animal. Anatomical and electrical evidence identifies the superior mandibular muscle as being partly responsible for the closing and retraction phases of movement. The inferior buccal ganglion determines the sequence of these buccal movements, but modification by sensory feed-back from the musculature is also implied. The preparation will allow a closer comparison of the control of movement in cephalopods and gastropods.  相似文献   

19.
We describe the skull and neck morphology of the late Miocene amphicyonid Magericyon anceps, focusing on aspects related to functional anatomy. This species, recorded only from the Vallesian sites of Batallones‐1 and Batallones‐3 (Madrid, Spain), is the last known amphicyonid in the fossil record of Western Europe, with the Batallones populations being one of the best‐known of the family. The morphology of its skull and cervical vertebrae allows us to infer aspects of its associated musculature, such as muscle strength and range of movement. Magericyon anceps had well‐developed neck muscles, suited for providing the head with a high capacity for lateral and rotatory movements, as well as for playing an important role in the extension and stabilization of the head and neck, improving its efficiency in killing and consuming prey. Magericyon anceps shared its habitat with other large carnivorans, which would have strongly influenced its behaviour. Rapid killing and processing of prey would have been an advantage for avoiding kleptoparasitism by other large predators, as well as reducing consumption time, during which M. anceps would have been more vulnerable to attack from competitors.  相似文献   

20.
Size variations in the anterior dentition were analyzed for 26 species of strepsirhine primates. The upper and lower incisor rows of strepsirhines, like those of anthropoid primates, scale isometrically with body size. Within the order Primates, strepsirhines exhibit the smallest incisors relative to body size, followed in increasing size by tarsiers, platyrrhines, and catarrhines. If the lateral teeth of the indriid toothcomb are interpreted as incisors and not canines, correlations between mandibular tooth size variables and body weight are maximized. The upper incisors of strepsirhines are extremely small and frequently widely separated, most likely to minimize occlusion with the toothcomb. Species deviations for assorted size variables of the anterior dentition generally fail to reflect functional variations in the use of the anterior teeth; some of the variables, however, do reflect taxonomic differences within the Strepsirhini. Although toothcomb size variations among extant strepsirhines are more readily interpreted in terms of gum feeding and bark scraping than they are in terms of grooming, anterior dental morphology as a whole is more easily explained by a grooming hypothesis when existing models of toothcomb origins are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号