首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Molecular genetic analysis and regulation of aflatoxin biosynthesis   总被引:15,自引:0,他引:15  
Aflatoxins, produced by some Aspergillus species, are toxic and extremely carcinogenic furanocoumarins. Recent investigations of the molecular mechanism of AFB biosynthesis showed that the genes required for biosynthesis are in a 70 kb gene cluster. They encode a DNA-binding protein functioning in aflatoxin pathway gene regulation, and other enzymes such as cytochrome p450-type monooxygenases, dehydrogenases, methyltransferases, and polyketide and fatty acid synthases. Information gained from these studies has led to a better understanding of aflatoxin biosynthesis by these fungi. The characterization of genes involved in aflatoxin formation affords the opportunity to examine the mechanism of molecular regulation of the aflatoxin biosynthetic pathway, particularly during the interaction between aflatoxin-producing fungi and plants.  相似文献   

3.
4.
5.
Bioactive gibberellins (GAs) are diterpene plant hormones that are biosynthesized through complex pathways and control diverse aspects of growth and development. GAs were first isolated as metabolites of a fungal rice pathogen, Gibberella fujikuroi, since renamed Fusarium fujikuroi. Although higher plants and the fungus produce structurally identical GAs, significant differences in their GA pathways, enzymes involved and gene regulation became apparent with the identification of GA biosynthetic genes in Arabidopsis thaliana and F. fujikuroi. Recent identifications of GA biosynthetic gene clusters in two other fungi, Phaeosphaeria spp. and Sphaceloma manihoticola, and the high conservation of GA cluster organization in these distantly related fungal species indicate that fungi evolved GA and other diterpene biosynthetic pathways independently from plants. Furthermore, the occurrence of GAs and recent identification of the first GA biosynthetic genes in the bacterium Bradyrhizobium japonicum make it possible to study evolution of GA pathways in general.In this review, we summarize our current understanding of the GA biosynthesis pathway, specifically the genes and enzymes involved as well as gene regulation and localization in the genomes of different fungi and compare it with that in higher and lower plants and bacteria.  相似文献   

6.

Background  

Carotenoids are a group of C40 isoprenoid molecules that play diverse biological and ecological roles in plants. Tomato is an important vegetable in human diet and provides the vitamin A precursor β-carotene. Genes encoding enzymes involved in carotenoid biosynthetic pathway have been cloned. However, regulation of genes involved in carotenoid biosynthetic pathway and accumulation of specific carotenoid in chromoplasts are not well understood. One of the approaches to understand regulation of carotenoid metabolism is to characterize the promoters of genes encoding proteins involved in carotenoid metabolism. Lycopene β-cyclase is one of the crucial enzymes in carotenoid biosynthesis pathway in plants. Its activity is required for synthesis of both α-and β-carotenes that are further converted into other carotenoids such as lutein, zeaxanthin, etc. This study describes the isolation and characterization of chromoplast-specific Lycopene β-cyclase (CYC-B) promoter from a green fruited S. habrochaites genotype EC520061.  相似文献   

7.
Gibberellins (GAs) constitute a large family of tetracyclic diterpenoid carboxylic acids, some members of which function as growth hormones in higher plants. As well as being phytohormones, GAs are also present in some fungi and bacteria. In recent years, GA biosynthetic genes from Fusarium fujikuroi and Arabidopsis thaliana have been cloned and well characterised. Although higher plants and the fungus both produce structurally identical GAs, there are important differences indicating that GA biosynthetic pathways have evolved independently in higher plants and fungi. The fact that horizontal gene transfer of GA genes from the plant to the fungus can be excluded, and that GA genes are obviously missing in closely related Fusarium species, raises the question of the origin of fungal GA biosynthetic genes. Besides characterisation of F. fujikuroi GA pathway genes, much progress has been made in the molecular analysis of regulatory mechanisms, especially the nitrogen metabolite repression controlling fungal GA biosynthesis. Basic research in this field has been shown to have an impact on biotechnology. Cloning of genes, construction of knock-out mutants, gene amplification, and regulation studies at the molecular level are powerful tools for improvement of production strains. Besides increased yields of the final product, GA3, it is now possible to produce intermediates of the GA biosynthetic pathway, such as ent-kaurene, ent-kaurenoic acid, and GA14, in high amounts using different knock-out mutants. This review concentrates mainly on the fungal biosynthetic pathway, the genes and enzymes involved, the regulation network, the biotechnological relevance of recent studies, and on evolutionary aspects of GA biosynthetic genes.  相似文献   

8.
The blue mould decay of apples is caused by Penicillium expansum and is associated with contamination by patulin, a worldwide regulated mycotoxin. Recently, a cluster of 15 genes (patA–patO) involved in patulin biosynthesis was identified in P. expansum. blast analysis revealed that patL encodes a Cys6 zinc finger regulatory factor. The deletion of patL caused a drastic decrease in the expression of all pat genes, leading to an absence of patulin production. Pathogenicity studies performed on 13 apple varieties indicated that the PeΔpatL strain could still infect apples, but the intensity of symptoms was weaker compared with the wild‐type strain. A lower growth rate was observed in the PeΔpatL strain when this strain was grown on nine of the 13 apple varieties tested. In the complemented PeΔpatL:patL strain, the ability to grow normally in apple and the production of patulin were restored. Our results clearly demonstrate that patulin is not indispensable in the initiation of the disease, but acts as a cultivar‐dependent aggressiveness factor for P. expansum. This conclusion was strengthened by the fact that the addition of patulin to apple infected by the PeΔpatL mutant restored the normal fungal colonization in apple.  相似文献   

9.
Interest in species of the genus Penicillium is related to their ability to produce the mycotoxin patulin and to cause spoilage of fruit products worldwide. The sequence of the isoepoxydon dehydrogenase (idh) gene, a gene in the patulin biosynthetic pathway, was determined for 28 strains representing 12 different Penicillium species known to produce the mycotoxin patulin. Isolates of Penicillium carneum, Penicillium clavigerum, Penicillium concentricum, Penicillium coprobium, Penicillium dipodomyicola, Penicillium expansum, Penicillium gladioli, Penicillium glandicola, Penicillium griseofulvum, Penicillium paneum, Penicillium sclerotigenum and Penicillium vulpinum were compared. Primer pairs for DNA amplification and sequencing were designed from the P. griseofulvum idh gene (GenBank AF006680). The two introns present were removed from the nucleotide sequences, which were translated to produce the IDH sequences of the 12 species for comparison. Phylogenetic relationships among the species were determined from rDNA (ITS1, 5.8 S, ITS2 and partial sequence of 28S rDNA) and from the idh nucleotide sequences minus the two introns. Maximum parsimony analysis showed trees based on rDNA and idh sequences to be congruent. It is anticipated that the genetic information obtained in the present study will aid in the design of probes, specific for patulin biosynthetic pathway genes, to identify the presence of these mycotoxigenic fungi. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

10.
Penicillium expansum, the causal agent of blue mould rot, is a critical health concern because of the production of the mycotoxin patulin in colonized apple fruit tissue. Although patulin is produced by many Penicillium species, the factor(s) activating its biosynthesis are not clear. Sucrose, a key sugar component of apple fruit, was found to modulate patulin accumulation in a dose‐responsive pattern. An increase in sucrose culture amendment from 15 to 175 mm decreased both patulin accumulation and expression of the global regulator laeA by 175‐ and five‐fold, respectively, whilst increasing expression of the carbon catabolite repressor creA. LaeA was found to regulate several secondary metabolite genes, including the patulin gene cluster and concomitant patulin synthesis in vitro. Virulence studies of ΔlaeA mutants of two geographically distant P. expansum isolates (Pe‐21 from Israel and Pe‐T01 from China) showed differential reduction in disease severity in freshly harvested fruit, ranging from no reduction for Ch‐Pe‐T01 strains to 15%–25% reduction for both strains in mature fruit, with the ΔlaeA strains of Is‐Pe‐21 always showing a greater loss in virulence. The results suggest the importance of abiotic factors in LaeA regulation of patulin and other secondary metabolites that contribute to pathogenicity.  相似文献   

11.
In this study the addition of ammonium ions (5–30 mM) toPenicillium urticae shake-flask cultures before, during and after the onset of polyketide biosynthesis was examined in a time-dependent manner for its repressive effect on metabolites and a marker enzyme of the patulin pathway and on the intracellular proteinases that also appear during the non-growth or idiophase. A study of the effect of ammonium ion addition, showed that both secondary enzyme and proteinase appearance were maximally delayed if the addition was made before the normal 7 h period of derepression/induction. If added during this period the effect of ammonium ions was progressively less. A reduction in the extracellular ammonium ion concentration from 30 to 4mM appeared to be required to initiate the derepression/induction process. Adding ammonium ions during the appearance of secondary enzymes caused a rapid decrease in specific activity, about 67% for the patulin pathway enzyme and 12% for proteinase. Nitrogen repression exerts a much stronger effect on the expression of polyketide genes as opposed to proteinase genes. Both patulin pathway enzymes and proteinases are subjected to proteolysis, but the proteinases retain much of their activity, whereas the polyketide biosynthetic enzymes do not.  相似文献   

12.
Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally produced in small amounts by basidiomycetes. Filamentous fungi like Aspergillus sp. are considered as suitable hosts for protein production due to their high capacity of protein secretion. For the purpose of peroxidase production, heme is considered a putative limiting factor. However, heme addition is not appropriate in large-scale production processes due to its high hydrophobicity and cost price. The preferred situation in order to overcome the limiting effect of heme would be to increase intracellular heme levels. This requires a thorough insight into the biosynthetic pathway and its regulation. In this review, the heme biosynthetic pathway is discussed with regards to synthesis, regulation, and transport. Although the heme biosynthetic pathway is a highly conserved and tightly regulated pathway, the mode of regulation does not appear to be conserved among eukaryotes. However, common factors like feedback inhibition and regulation by heme, iron, and oxygen appear to be involved in regulation of the heme biosynthesis pathway in most organisms. Therefore, they are the initial targets to be investigated in Aspergillus niger.  相似文献   

13.
14.
Purified DNA from isolates of Penicillium griseofulvum and P. expansum was used as a template to amplify a 600-bp fragment of the isoepoxydon dehydrogenase (idh) gene of the patulin biosynthetic pathway. Primer pairs designed from the P. griseofulvum gene (GenBank accession AF006680) to amplify specific regions of the idh gene yielded similar-sized bands for all strains. Asymmetrical amplification produced DNA products for sequencing and DNA sequences were translated to produce the corresponding amino acid sequences. After removal of two introns present in the region sequenced, amino acid sequences were compared. There were 12 amino acid differences between P. expansum and P. griseofulvum in the coding region. The differences correlated with the amount of patulin previously produced in culture, with strains of P. griseofulvum producing the greatest amounts of patulin.  相似文献   

15.
16.
β-lactam antibiotics (e.g. penicillins, cephalosporins) are of major clinical importance and contribute to over 40% of the total antibiotic market. These compounds are produced as secondary metabolites by certain actinomycetes and filamentous fungi (e.g. Penicillium, Aspergillus and Acremonium species). The industrial producer of penicillin is the fungus Penicillium chrysogenum. The enzymes of the penicillin biosynthetic pathway are well characterized and most of them are encoded by genes that are organized in a cluster in the genome. Remarkably, the penicillin biosynthetic pathway is compartmentalized: the initial steps of penicillin biosynthesis are catalyzed by cytosolic enzymes, whereas the two final steps involve peroxisomal enzymes. Here, we describe the biochemical properties of the enzymes of β-lactam biosynthesis in P. chrysogenum and the role of peroxisomes in this process. An overview is given  相似文献   

17.
18.
Enzymes of triacylglycerol synthesis and their regulation   总被引:16,自引:0,他引:16  
Since the pathways of glycerolipid biosynthesis were elucidated in the 1950's, considerable knowledge has been gained about the enzymes that catalyze the lipid biosynthetic reactions and the factors that regulate triacylglycerol biosynthesis. In the last few decades, in part due to advances in technology and the wide availability of nucleotide and amino acid sequences, we have made enormous strides in our understanding of these enzymes at the molecular level. In many cases, sequence information obtained from lipid biosynthetic enzymes of prokaryotes and yeast has provided the means to search the genomic and expressed sequence tag databases for mammalian homologs and most of the genes have now been identified. Surprisingly, multiple isoforms appear to catalyze the same chemical reactions, suggesting that each isoform may play a distinct functional role in the pathway of triacylglycerol and phospholipid biosynthesis. This review focuses on the de novo biosynthesis of triacylglycerol in eukaryotic cells, the isoenzymes that are involved, their subcellular locations, how they are regulated, and their putative individual roles in glycerolipid biosynthesis.  相似文献   

19.
Spatial organization of metabolic enzymes may represent a general cellular mechanism to regulate metabolic flux. One recent example of this type of cellular phenomenon is the purinosome, a newly discovered multi-enzyme metabolic assembly that includes all of the enzymes within the de novo purine biosynthetic pathway. Our understanding of the components and regulation of purinosomes has significantly grown in recent years. This paper reviews the purine de novo biosynthesis pathway and its regulation, and presents the evidence supporting the purinosome assembly and disassembly processes under the control of G-protein-coupled receptor (GPCR) signaling. This paper also discusses the implications of purinosome and GPCR regulation in drug discovery.  相似文献   

20.
Phloroglucinol derivatives are a major class of secondary metabolites of wide occurrence in biological systems. In the bacteria kingdom, these compounds can only be synthesized by some species of Pseudomonads. Pseudomonas spp. could produce 2,4-diacetylphloroglucinol (DAPG) that plays an important role in the biological control of many plant pathogens. In this review, we summarize knowledge about synthesis of phloroglucinol compounds based on the DAPG biosynthetic pathway. Recent advances that have been made in understanding phloroglucinol compound biosynthesis and regulation are highlighted. From these studies, researchers have identified the biosynthesis pathway of DAPG. Most of the genes involved in the biosynthesis pathway have been cloned and characterized. Additionally, heterologous systems of the model microorganism Escherichia coli are constructed to produce phloroglucinol. Although further work is still required, a full understanding of phloroglucinol compound biosynthesis is almost within reach. This review also suggests new directions and attempts to gain some insights for better understanding of the biosynthesis and regulation of DAPG. The combination of traditional biochemistry and molecular biology with new systems biology and synthetic biology tools will provide a better view of phloroglucinol compound biosynthesis and a greater potential of microbial production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号