首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voltage-gated Na+ channels (VGSCs), predominantly the ‘neonatal’ splice form of Nav1.5 (nNav1.5), are upregulated in metastatic breast cancer (BCa) and potentiate metastatic cell behaviours. VGSCs comprise one pore-forming α subunit and one or more β subunits. The latter modulate VGSC expression and gating, and can function as cell adhesion molecules of the immunoglobulin superfamily. The aims of this study were (1) to determine which β subunits were expressed in weakly metastatic MCF-7 and strongly metastatic MDA-MB-231 human BCa cells, and (2) to investigate the possible role of β subunits in adhesion and migration. In both cell lines, the β subunit mRNA expression profile was SCN1B (encoding β1) ? SCN4B (encoding β4) > SCN2B (encoding β2); SCN3B (encoding β3) was not detected. MCF-7 cells had much higher levels of all β subunit mRNAs than MDA-MB-231 cells, and β1 mRNA was the most abundant. Similarly, β1 protein was strongly expressed in MCF-7 and barely detectable in MDA-MB-231 cells. In MCF-7 cells transfected with siRNA targeting β1, adhesion was reduced by 35%, while migration was increased by 121%. The increase in migration was reversed by tetrodotoxin (TTX). In addition, levels of nNav1.5 mRNA and protein were increased following β1 down-regulation. Stable expression of β1 in MDA-MB-231 cells increased functional VGSC activity, process length and adhesion, and reduced lateral motility and proliferation. We conclude that β1 is a novel cell adhesion molecule in BCa cells and can control VGSC (nNav1.5) expression and, concomitantly, cellular migration.  相似文献   

2.
Voltage-gated sodium channels (VGSC) are a well-established drug target for anti-epileptic, anti-arrhythmic and pain medications due to their presence and the important roles that they play in excitable cells. Recently, their presence has been recognized in non-excitable cells such as cancer cells and their overexpression has been shown to be associated with metastatic behavior in a variety of human cancers. The neonatal isoform of the VGSC subtype, Nav1.5 (nNav1.5) is overexpressed in the highly aggressive human breast cancer cell line, MDA-MB-231. The activity of nNav1.5 is known to promote the breast cancer cell invasion in vitro and metastasis in vivo, and its expression in primary mammary tumors has been associated with metastasis and patient death. Metastasis development is responsible for the high mortality of breast cancer and currently there is no treatment available to specifically prevent or inhibit breast cancer metastasis. In the present study, a 3D-QSAR model is used to assist the development of low micromolar small molecule VGSC blockers. Using this model, we have designed, synthesized and evaluated five small molecule compounds as blockers of nNav1.5-dependent inward currents in whole-cell patch-clamp experiments in MDA-MB-231 cells. The most active compound identified from these studies blocked sodium currents by 34.9?±?6.6% at 1?μM. This compound also inhibited the invasion of MDA-MB-231 cells by 30.3?±?4.5% at 1?μM concentration without affecting the cell viability. The potent small molecule compounds presented here have the potential to be developed as drugs for breast cancer metastasis treatment.  相似文献   

3.
Activated protein C (APC), an anticoagulant serine protease, has been shown to have non-hemostatic functions related to inflammation, cell survival, and cell migration. In this study we investigate the mechanism by which APC promotes angiogenesis and breast cancer invasion using ex vivo and in vitro methods. When proteolytically active, APC promotes cell motility/invasion and tube formation of endothelial cells. Ex vivo aortic ring assays verify the role of APC in promoting angiogenesis, which was determined to be dependent on EGFR and MMP activation. Given the capacity of APC to promote angiogenesis and the importance of this process in cancer pathology, we investigated whether the mechanisms by which APC promotes angiogenesis can also promote motility and invasion in the MDA-MB-231 breast cancer cell line. Our results indicate that, extracellularly, APC engages EPCR, PAR-1, and EGFR in order to increase the invasiveness of MDA-MB-231 cells. APC activation of matrix metalloprotease (MMP) -2 and/or -9 is necessary but not sufficient to increase invasion, and APC does not utilize the endogenous plasminogen activation system to increase invasion. Intracellularly, APC activates ERK, Akt, and NFκB, but not the JNK pathway to promote MDA-MB-231 cell motility. Similar to the hemostatic protease thrombin, APC has the ability to enhance both endothelial cell motility/angiogenesis and breast cancer cell migration.  相似文献   

4.
6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells   总被引:1,自引:0,他引:1  
Gingerol (Zingiber officinale Roscoe, Zingiberaceae) is one of the most frequently and heavily consumed dietary condiments throughout the world. The oleoresin from rhizomes of ginger contains [6]-gingerol (1-[4′-hydroxy-3′-methoxyphenyl]-5-hydroxy-3-decanone) and its homologs which are pungent ingredients that have been found to possess many interesting pharmacological and physiological activities, such as anti-inflammatory, antihepatotoxic and cardiotonic effects. However, the effects of [6]-gingerol on metastatic processes in breast cancer cells are not currently well known. Therefore, in this study, we examined the effects of [6]-gingerol on adhesion, invasion, motility, activity and the amount of MMP-2 or -9 in the MDA-MB-231 human breast cancer cell line. We cultured MDA-MB-231 cells in the presence of various concentrations of [6]-gingerol (0, 2.5, 5 and 10 μM). [6]-Gingerol had no effect on cell adhesion up to 5 μM, but resulted in a 16% reduction at 10 μM. Treatment of MDA-MB-231 cells with increasing concentrations of [6]-gingerol led to a concentration-dependent decrease in cell migration and motility. The activities of MMP-2 or MMP-9 in MDA-MB-231 cells were decreased by treatment with [6]-gingerol and occurred in a dose-dependent manner. The amount of MMP-2 protein was decreased in a dose-dependent manner, although there was no change in the MMP-9 protein levels following treatment with [6]-gingerol. MMP-2 and MMP-9 mRNA expression were decreased by [6]-gingerol treatment. In conclusion, we have shown that [6]-gingerol inhibits cell adhesion, invasion, motility and activities of MMP-2 and MMP-9 in MDA-MB-231 human breast cancer cell lines.  相似文献   

5.
6.
The endocytic membrane activities of two human breast cancer cell lines (MDA-MB-231 and MCF-7) of strong and weak metastatic potential, respectively, were studied in a comparative approach. Uptake of horseradish peroxidase was used to follow endocytosis. Dependence on ionic conditions and voltage-gated sodium channel (VGSC) activity were characterized. Fractal methods were used to analyze quantitative differences in vesicular patterning. Digital quantification showed that MDA-MB-231 cells took up more tracer (i.e., were more endocytic) than MCF-7 cells. For the former, uptake was totally dependent on extracellular Na+ and partially dependent on extracellular and intracellular Ca2+ and protein kinase activity. Analyzing the generalized fractal dimension (D q ) and its Legendre transform f(α) revealed that under control conditions, all multifractal parameters determined had values greater for MDA-MB-231 compared with MCF-7 cells, consistent with endocytic/vesicular activity being more developed in the strongly metastatic cells. All fractal parameters studied were sensitive to the VGSC blocker tetrodotoxin (TTX). Some of the parameters had a “simple” dependence on VGSC activity, if present, whereby pretreatment with TTX reduced the values for the MDA-MB-231 cells and eliminated the differences between the two cell lines. For other parameters, however, there was a “complex” dependence on VGSC activity. The possible physical/physiological meaning of the mathematical parameters studied and the nature of involvement of VGSC activity in control of endocytosis/secretion are discussed.  相似文献   

7.
Paracellular permeability (PCP) is governed by tight junctions (TJs) in epithelial cells, acting as cell-cell adhesion structures, the aberration of which is known to be linked to the dissociation and metastasis of breast cancer cells. This study hypothesized that the function of TJs in human breast cancer cells can be augmented by gamma linolenic acid (GLA), selenium (Se), and iodine (I) in the presence of 17-beta-estradiol, as these molecules are known to increase TJ functions in endothelial cells, using assays of trans-epithelial resistance (TER), PCP, immunofluorescence, and in vitro invasion and motility models. GLA, I, and Se individually increased TER of MDA-MB-231 and MCF-7 human breast cancer cells. The combination of all three agents also had a significant increase in TER. Addition of GLA/Se/I reduced PCP of both breast cancer cell lines. GLA/Se/I reversed the effect of 17-beta-estradiol (reduced TER, increased PCP). Immunofluorescence revealed that after treatment with Se/I/GLA over 24 h, there was increasing relocation to breast cancer cell-cell junctions of occludin and ZO-1 in MCF-7 cells. Moreover, treatment with GLA/Se/I, alone or in combination, significantly reduced in vitro invasion of MDA-MB-231 cells through an endothelial cell barrier (P < 0.0001) and reduced 17-beta-estradiol induced breast cancer cell motility (P < 0.0001). Our previous work has demonstrated that GLA, I, and Se alone, or in combination are able to strengthen the function of TJs in human endothelial cells; this has now proved to be true of human breast cancer cells. This combination also completely reversed the effect of 17-beta-estradiol in these cells.  相似文献   

8.
Metastasis is the major cause of breast cancer mortality. The strength of cell adhesion to extracellular matrix is critical to cancer cell migration. Integrins, the primary mediators of cell to extra-cellular matrix adhesion, contain distinct divalent cation-binding sites. Binding of manganese and magnesium is vital to integrin-mediated cancer cell adhesion and migration. We hypothesized that zinc, a divalent cation, can modulate breast cancer metastasis through interfering with these divalent cation-dependent integrin-mediated cancer cell adhesion and migration. MDA-MB-231 cells were cultured in a zinc-depleted medium supplemented with 0 (control), 2.5, 5, 10, 25 and 50 μM of zinc to mimic severe zinc-deficiency, moderate zinc-deficiency, adequate zinc and three levels of zinc-supplementation: low-, moderate- and high-levels of zinc-supplementation, respectively. Zinc treatments had no effect on cellular zinc concentration, cell number and cell viability. Zinc at 5–50 μM reduced migration distance of MDA-MB-231 cells on fibronectin by 43–86% and migration rate on fibronectin by 72–90%. Zinc induced a dose-dependent inhibition of cell adhesion to fibronectin (R2=?0.98). Zinc at 10–50 μM reduced magnesium-facilitated cell adhesion to fibronectin in a dose-dependent manner (R2=?0.90). However, zinc had no effect on manganese-facilitated cell adhesion to fibronectin. Zinc at 5–50 μM caused rounding of the normally elongated, irregular-shaped MDA-MB-231 cells and disappearance of F-actin. Anti-integrin α5- and β1-subunit blocking antibodies inhibited magnesium-facilitated cell adhesion to fibronectin by 95 and 99%, respectively. In summary, zinc inhibited MDA-MB-231 cell migration on fibronectin by interfering with magnesium-dependent integrin-, likely integrin α5/β1-, mediated adhesion.  相似文献   

9.

Introduction

The androgen receptor (AR) is the most highly expressed steroid receptor in breast cancer with 75–95% of estrogen receptor (ER)-positive and 40–70% of ER-negative breast cancers expressing AR. Though historically breast cancers were treated with steroidal androgens, their use fell from favor because of their virilizing side effects and the emergence of tamoxifen. Nonsteroidal, tissue selective androgen receptor modulators (SARMs) may provide a novel targeted approach to exploit the therapeutic benefits of androgen therapy in breast cancer.

Materials and Methods

Since MDA-MB-453 triple-negative breast cancer cells express mutated AR, PTEN, and p53, MDA-MB-231 triple-negative breast cancer cells stably expressing wildtype AR (MDA-MB-231-AR) were used to evaluate the in vitro and in vivo anti-proliferative effects of SARMs. Microarray analysis and epithelial:mesenchymal stem cell (MSC) co-culture signaling studies were performed to understand the mechanisms of action.

Results

Dihydrotestosterone and SARMs, but not bicalutamide, inhibited the proliferation of MDA-MB-231-AR. The SARMs reduced the MDA-MB-231-AR tumor growth and tumor weight by greater than 90%, compared to vehicle-treated tumors. SARM treatment inhibited the intratumoral expression of genes and pathways that promote breast cancer development through its actions on the AR. SARM treatment also inhibited the metastasis-promoting paracrine factors, IL6 and MMP13, and subsequent migration and invasion of epithelial:MSC co-cultures.

Conclusion

1. AR stimulation inhibits paracrine factors that are important for MSC interactions and breast cancer invasion and metastasis. 2. SARMs may provide promise as novel targeted therapies to treat AR-positive triple-negative breast cancer.  相似文献   

10.
Kisspeptins (KPs) are major regulators of trophoblast and cancer invasion. Thus far, limited and conflicting data are available on KP-mediated modulation of breast cancer (BC) metastasis; mostly based on synthetic KP-10, the most active fragment of KP. Here, we report for the first time comprehensive functional effects of term placental KPs on proliferation, adhesion, Matrigel invasion, motility, MMP activity and pro-inflammatory cytokine production in MDA-MB-231 (estrogen receptor-negative) and MCF-7 (estrogen receptor-positive). KPs were expressed at high level by term placental syncytiotrophoblasts and released in soluble form. Placental explant conditioned medium containing KPs (CM) significantly reduced proliferation of both cell types compared to CM without (w/o) KP (CM-w/o KP) in a dose- and time-dependent manner. In MDA-MB-231 cells, placental KPs significantly reduced adhesive properties, while increased MMP9 and MMP2 activity and stimulated invasion. Increased invasiveness of MDA-MB-231 cells after CM treatment was inhibited by KP receptor antagonist, P-234. CM significantly reduced motility of MCF-7 cells at all time points (2–30 hr), while it stimulated motility of MDA-MB-231 cells. These effects were reversed by P-234. Co-treatment with selective ER modulators, Tamoxifen and Raloxifene, inhibited the effect of CM on motility of MCF-7 cells. The level of IL-6 in supernatant of MCF-7 cells treated with CM was higher compared to those treated with CM-w/o KP. Both cell types produced more IL-8 after treatment with CM compared to those treated with CM-w/o KP. Taken together, our observations suggest that placental KPs differentially modulate vital parameters of estrogen receptor-positive and -negative BC cells possibly through modulation of pro-inflammatory cytokine production.  相似文献   

11.
Activator and inhibitor roles for the 88-kDa-secreted glycoprotein progranulin (PGRN) have been demonstrated in ovarian cancer cells. Here, we investigated the effects of PGRN in breast cancer migration. Testing MCF7, MDA-MB-453, and MDA-MB-231 human breast cancer cells and the MCF10A breast epithelial cell line, we demonstrate that LPA-induced PGRN stimulation led to a significant increase in cell invasion of MDA-MB-453 and MDA-MB-231 cells only (p<0.05). Moreover, incubation with an anti-PGRN antibody, an inhibitor of the ERK pathway (PD98059) or both in combination inhibited the ability of MDA-MB-231 cells to invade. Furthermore, the expression of focal adhesion kinases promoted by LPA-induced PGRN was also inhibited by PD98059 alone or in combination with an anti-PGRN antibody (p<0.05). Taken together, these results suggest that the LPA activation of PGRN involving the ERK pathway is critical to promote MDA-MB-231 breast cancer cell invasion.  相似文献   

12.
The inhibitor of apoptosis proteins (IAP) are closely correlated with proliferation, apoptosis, motility, and metastasis. Livin is the most recently identified IAP, and its role in breast progression remains unknown. In our study, analyses of 50 patients with breast cancer revealed that the positive expression rate of Livin was higher in breast cancer tissues (62%) relative to that in adjacent (35%) and normal tissues (25%). Livin expression in breast cancer correlated with the clinical stage and axillary lymph node metastasis and could be used as a prognostic marker. Our in vitro experiment revealed that Livin was highly expressed in high-invasive MDA-MB-231 cells as compared to low-invasive cells (MCF-7). Suppression of Livin by short-hairpin RNA reduced the Livin expression of MDA-MB-231 cells and subsequently inhibited tumor cell growth, proliferation, and colony formation and induced tumor cell apoptosis, motility, migration, and invasion. Overexpression of Livin in MCF7 cells resulted in increased migration and invasion capabilities of the cells without affecting proliferation and apoptosis. In addition, epithelial–mesenchymal transition (EMT) was induced by Livin expression in breast cancer cell lines. The high level of phosphorylated AKT in MDA-MB-231 cells was suppressed by Livin knockdown. Further, Livin-induced migration and invasion could be abolished by either the application of the phosphoinositide-3-kinase inhibitor LY294002 or knockdown of AKT expression using small-interfering RNA. In conclusion, Livin serves as an independent prognostic indicator for breast cancer. Livin expression promotes breast cancer metastasis through the activation of AKT signaling and induction of EMT in breast cancer cells both in vitro and in vivo.  相似文献   

13.
2-Arylbenzothiazoles are an important class of bicyclic privileged substructures present in various natural or synthetic compounds that have been shown to possess anticancer, antifungal, antibacterial, anti-inflammatory, and antiallergic activities. This study examined the antiproliferative properties of 2-(3,5-dihydroxyphenyl)-6-hydroxybenzothiazole (DH) and its molecular mechanism of action in human breast cancer MDA-MB-231 cells. DH inhibits the growth of MDA-MB-231 cells with an IC(50) value of 25 μM in a dose/time-dependent manner as measured by the microculture tetrazolium method. Cell cycle analysis by flow cytometry showed that DH-induced growth arrest could be associated to apoptosis in MDA-MB-231 cells.  相似文献   

14.
Activated protein C (APC) is a serine protease that regulates thrombin (IIa) production through inactivation of blood coagulation factors Va and VIIIa. APC also has non-hemostatic functions related to inflammation, proliferation, and apoptosis through various mechanisms. Using two breast cancer cell lines, MDA-MB-231 and MDA-MB-435, we investigated the role of APC in cell chemotaxis and invasion. Treatment of cells with increasing APC concentrations (1-50 microg/ml) increased invasion and chemotaxis in a concentration-dependent manner. Only the active form of APC increased invasion and chemotaxis of the MDA-MB-231 cells when compared to 3 inactive APC derivatives. Using a modified "checkerboard" analysis, APC was shown to only affect migration when plated with the cells; therefore, APC is not a chemoattractant. Blocking antibodies to endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR-1) attenuated the effects of APC on chemotaxis in the MDA-MB-231 cells. Finally, treatment of the MDA-MB-231 cells with the proliferation inhibitor, Na butyrate, showed that APC did not increase migration by increasing cell number. Therefore, APC increases invasion and chemotaxis of cells by binding to the cell surface and activating specific signaling pathways through EPCR and PAR-1.  相似文献   

15.
Objectives: The goal of the current study is to determine whether the β-adrenoreceptor (β-AR) plays a role in the anti-obesity and anti-diabetic effects of zinc-α2-glycoprotein (ZAG). Material and methods: This has been investigated in CHO-K1 cells transfected with the human β1-, β2-, β3-AR and in ob/ob mice. Cyclic AMP assays were carried out along with binding studies. Ob/ob mice were treated with ZAG and glucose transportation and insulin were examined in the presence or absence of propranolol. Results: ZAG bound to the β3-AR with higher affinity (Kd 46 ± 1 nM) than the β2-AR (Kd 71 ± 3 nM) while there was no binding to the β1-AR, and this correlated with the increases in cyclic AMP in CHO-K1 cells transfected with the various β-AR and treated with ZAG. Treatment of ob/ob mice with ZAG increased protein expression of β3-AR in gastrocnemius muscle, and in white and brown adipose tissues, but had no effect on expression of β1- and β2-AR. A reduction of body weight was seen and urinary glucose excretion, increase in body temperature, reduction in maximal plasma glucose and insulin levels in the oral glucose tolerance test, and stimulation of glucose transport into skeletal muscle and adipose tissue, were completely attenuated by the non-specific β-AR antagonist propranolol. Conclusion: The results suggest that the effects of ZAG on body weight and insulin sensitivity in ob/ob mice are manifested through a β-3AR, or possibly a β2-AR.  相似文献   

16.
Abstract

Activator and inhibitor roles for the 88-kDa-secreted glycoprotein progranulin (PGRN) have been demonstrated in ovarian cancer cells. Here, we investigated the effects of PGRN in breast cancer migration. Testing MCF7, MDA-MB-453, and MDA-MB-231 human breast cancer cells and the MCF10A breast epithelial cell line, we demonstrate that LPA-induced PGRN stimulation led to a significant increase in cell invasion of MDA-MB-453 and MDA-MB-231 cells only (p < 0.05). Moreover, incubation with an anti-PGRN antibody, an inhibitor of the ERK pathway (PD98059) or both in combination inhibited the ability of MDA-MB-231 cells to invade. Furthermore, the expression of focal adhesion kinases promoted by LPA-induced PGRN was also inhibited by PD98059 alone or in combination with an anti-PGRN antibody (p < 0.05). Taken together, these results suggest that the LPA activation of PGRN involving the ERK pathway is critical to promote MDA-MB-231 breast cancer cell invasion.  相似文献   

17.
Chromones and triazoles are groups of heterocyclic compounds widely known to exhibit a broad spectrum of biological activities. The combination of these two pharmacophores could result in multiple mechanisms of action to increase the potency of anticancer drugs and reduce their side effects. The in vitro antitumor effect of eight chromone-based compounds was evaluated in breast (T-47D and MDA-MB-231) and prostate (PC3) cancer cell lines, and in non-cancerous human mammary epithelial cells (HuMEC) using a resazurin-based method. Flow cytometry was used to evaluate the cell cycle and cell death, and ɣ-H2AX detection to identify DNA damage. The compounds showed selective cytotoxicity against cancer cell lines, with (E)-2-(2-(5-(4-methoxyphenyl)-2H-1,2,3-triazol-4-yl)vinyl)-4H-chromen-4-one (compound 2 a ) being more potent in non-metastatic T-47D cells (IC50 0.65 μM). Replacing the hydrogen by a methyl group on the triazole ring in compound 2 b enhanced the cytotoxic activity up to IC50 0.24 μM in PC3, 0.32 μM in MDA-MB-231 and 0.52 μM in T-47D. Compound 2 b was 3-fold more potent than doxorubicin in PC3 (IC50 0.73 μM) and 4-fold in MDA-MB-231 (IC50 1.51 μM). The addition of tetrahydroisoindole-1,3-dione moiety in compound 5 did not improve its effectiveness in any of the cell lines but it exerted the lowest cytotoxic effect in HuMEC (IC50 221.35 μM). The compounds revealed different cytotoxic mechanisms: 2 a and 2 b induced G2/M arrest, and compound 5 did not affect the cell cycle.  相似文献   

18.
Evidence supports a role for the tetrodotoxin-sensitive Nav1.7 and the tetrodotoxin-resistant Nav1.8 in the pathogenesis of pain. Ranolazine, an anti-ischemic drug, has been shown to block cardiac (Nav1.5) late sodium current (INa). In this study, whole-cell patch-clamp techniques were used to determine the effects of ranolazine on human Nav1.7 (hNav1.7+β1 subunits) and rat Nav1.8 (rNav1.8) channels expressed in HEK293 and ND7-23 cells, respectively. Ranolazine reduced hNav1.7 and rNav1.8 INa with IC50 values of 10.3 and 21.5 μM (holding potential=-120 or -100 mV, respectively). The potency of INa block by ranolazine increased to 3.2 and 4.3 μM when 5-sec depolarizing prepulses to -70 (hNav1.7) and -40 (rNav1.8) mV were applied. Ranolazine caused a preferential hyperpolarizing shift of the steady-state fast, intermediate and slow inactivation of hNav1.7 and and intermediate and slow inactivation of rNav1.8, suggesting preferential interaction of the drug with the inactivated states of both channels. Ranolazine (30 μM) caused a use-dependent block (10-msec pulses at 1, 2 and 5 Hz) of hNav1.7 and rNav1.8 INa and significantly accelerated the onset of, and slowed the recovery from inactivation, of both channels. An increase of depolarizing pulse duration from 3 to 200 msec did not affect the use-dependent block of INa by 100 μM ranolazine. Taken together, the data suggest that ranolazine blocks the open state and may interact with the inactivated states of Nav1.7 and Nav1.8 channels. The state-and use-dependent modulation of hNav1.7 and rNav1.8 Na+ channels by ranolazine could lead to an increased effect of the drug at high firing frequencies, as in injured neurons.  相似文献   

19.
Although voltage-gated sodium channel (VGSC) activity, upregulated significantly in strongly metastatic human breast cancer cells, has been found to potentiate a variety of in vitro metastatic cell behaviors, the mechanism(s) regulating channel expression/activity is not clear. As a step toward identifying possible serum factors that might be responsible for this, we tested whether medium in which fetal bovine serum (FBS) was substituted with a commercial serum replacement agent (SR-2), comprising insulin and bovine serum albumin, would influence the VGSC-dependent in vitro metastatic cell behaviors. Human breast cancer MDA-MB-231 cells were used as a model. Measurements of lateral motility, transverse migration and adhesion showed consistently that the channel's involvement in metastatic cell behaviors depended on the extracellular biochemical conditions. In normal medium (5% FBS), tetrodotoxin (TTX), a highly specific blocker of VGSCs, suppressed these cellular behaviors, as reported before. In contrast, in SR-2 medium, TTX had opposite effects. However, blocking endogenous insulin/insulin-like growth factor receptor signaling with AG1024 eliminated or reversed the anomalous effects of TTX. Insulin added to serum-free medium increased migration, and TTX increased it further. In conclusion, (1) the biochemical constitution of the extracellular medium had a significant impact upon breast cancer cells' in vitro metastatic behaviors and (2) insulin, in particular, controlled the mode of the functional association between cells' VGSC activity and metastatic machinery.  相似文献   

20.
J E Milmore  K M Taylor 《Life sciences》1975,17(12):1843-1847
Propranolol and its d-isomer inhibit monoamine oxidase (MAO) from the brain of the rat. The I50 for each was 260 μM, compared to a value of 23 μM for pargyline. The I50 for the local anesthetic procaine was 22 μM in this system. Practolol, a β-blocker that is not a local anesthetic, had only weak activity at 1 mM. Levels of serotonin (5-HT) were increased in the cerebral cortex of rats by treatment with d,1-propranolol (12.5–50 mg/kg), whereas levels of 5-hydroxyindoleacetic acid (5-HIAA) were decreased. Levels of 5-HT were also increased by treatment with similar doses of d-propranolol, but not by treatment with practolol. It was concluded that propranolol inhibits MAO and the metabolism of 5-HT by a mechanism unrelated to blockade of β-adrenergic receptors and that this activity may be related to the local anesthetic properties of this drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号