首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
5.
6.
Survival of greater sage-grouse (Centrocercus urophasianus) has been well described in large populations across the species range. Very little published information exists, however, on survival rates of translocated sage-grouse or grouse from a long-term (>10 yr) study. Our objectives were to estimate seasonal and annual survival rates; assess differences in survival between resident and translocated, adult and yearling, and male and female sage-grouse; identify environmental and behavioral factors associated with survival; and assess the influence of mammalian predator control on survival rates of radio-marked sage-grouse in Strawberry Valley, Utah from 1998 to 2010. We used a 2-stage model selection approach using Akaike's Information Criterion corrected for sample size (AICc) with known-fate models in Program MARK to evaluate the influences of seasonal, annual, demographic, and behavioral effects on survival rates of sage-grouse. We captured and fitted 535 individual sage-grouse (male and female, resident and translocated) with radio transmitters over a 13-year period and monitored them weekly. The top model of survival, which accounted for 22% of the AICc weight, included 3 seasons that varied by year where rates were influenced by residency, sex, and whether a female initiated a nest. A group-level covariate for the number of canids killed each year received some support as this variable improved model fit compared to identical models without it, although confidence intervals around β estimates overlapped zero slightly. All other demographic or environmental variables showed little or no support. Annual estimates of survival for females ranged between 28% and 84% depending on year and translocation source. Survival was consistently highest during the fall–winter months with a mean monthly survival rate of 0.97 (95% CI = 0.96–0.98). The lack of a control site and other potential confounding factors limit the extent of our inference with respect to predator control. Nonetheless, we suggest managers consider enhancing nesting habitat, translocating sage-grouse, and possibly controlling predators to improve survival rates of sage-grouse. © The Wildlife Society, 2013  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Animals can require different habitat types throughout their annual cycles. When considering habitat prioritization, we need to explicitly consider habitat requirements throughout the annual cycle, particularly for species of conservation concern. Understanding annual habitat requirements begins with quantifying how far individuals move across landscapes between key life stages to access required habitats. We quantified individual interseasonal movements for greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) using radio-telemetry spanning the majority of the species distribution in Wyoming. Sage-grouse are currently a candidate for listing under the United States Endangered Species Act and Wyoming is predicted to remain a stronghold for the species. Sage-grouse use distinct seasonal habitats throughout their annual cycle for breeding, brood rearing, and wintering. Average movement distances in Wyoming from nest sites to summer-late brood-rearing locations were 8.1 km (SE = 0.3 km; n = 828 individuals) and the average subsequent distances moved from summer sites to winter locations were 17.3 km (SE = 0.5 km; n = 607 individuals). Average nest-to-winter movements were 14.4 km (SE = 0.6 km; n = 434 individuals). We documented remarkable variation in the extent of movement distances both within and among sites across Wyoming, with some individuals remaining year-round in the same vicinity and others moving over 50 km between life stages. Our results suggest defining any of our populations as migratory or non-migratory is innappropriate as individual strategies vary widely. We compared movement distances of birds marked using Global Positioning System (GPS) and very high frequency (VHF) radio marking techniques and found no evidence that the heavier GPS radios limited movement. Furthermore, we examined the capacity of the sage-grouse core regions concept to capture seasonal locations. As expected, we found the core regions approach, which was developed based on lek data, was generally better at capturing the nesting locations than summer or winter locations. However, across Wyoming the sage-grouse breeding core regions still contained a relatively high percentage of summer and winter locations and seem to be a reasonable surrogate for non-breeding habitat when no other information exists. We suggest that conservation efforts for greater sage-grouse implicitly incorporate seasonal habitat needs because of high variation in the amount of overlap among breeding core regions and non-breeding habitat. © 2012 The Wildlife Society.  相似文献   

17.
18.
19.
Greater sage-grouse (Centrocercus urophasianus) at the western edge of the Dakotas occur in the transition zone between sagebrush and grassland communities. These mixed sagebrush (Artemisia sp.) and grasslands differ from those habitats that comprise the central portions of the sage-grouse range; yet, no information is available on winter habitat selection within this region of their distribution. We evaluated factors influencing greater sage-grouse winter habitat use in North Dakota during 2005–2006 and 2006–2007 and in South Dakota during 2006–2007 and 2007–2008. We captured and radio-marked 97 breeding-age females and 54 breeding-age males from 2005 to 2007 and quantified habitat selection for 98 of these birds that were alive during winter. We collected habitat measurements at 340 (177 ND, 163 SD) sage-grouse use sites and 680 random (340 each at 250 m and 500 m from locations) dependent sites. Use sites differed from random sites with greater percent sagebrush cover (14.75% use vs. 7.29% random; P < 0.001), percent total vegetation cover (36.76% use vs. 32.96% random; P ≤ 0.001), and sagebrush density (2.12 plants/m2 use vs. 0.94 plants/m2 random; P ≤ 0.001), but lesser percent grass cover (11.76% use vs. 16.01% random; P ≤ 0.001) and litter cover (4.34% use vs. 5.55% random; P = 0.001) and lower sagebrush height (20.02 cm use vs. 21.35 cm random; P = 0.13) and grass height (21.47 cm use vs. 23.21 cm random; P = 0.15). We used conditional logistic regression to estimate winter habitat selection by sage-grouse on continuous scales. The model sagebrush cover + sagebrush height + sagebrush cover × sagebrush height ( = 0.60) was the most supported of the 13 models we considered, indicating that percent sagebrush cover strongly influenced selection. Logistic odds ratios indicated that the probability of selection by sage-grouse increased by 1.867 for every 1% increase in sagebrush cover (95% CI = 1.627–2.141) and by 1.041 for every 1 cm increase in sagebrush height (95% CI = 1.002–1.082). The interaction between percent sagebrush canopy cover and sagebrush height (β = −0.01, SE ≤ 0.01; odds ratio = 0.987 [95% CI = 0.983–0.992]) also was significant. Management could focus on avoiding additional loss of sagebrush habitat, identifying areas of critical winter habitat, and implementing management actions based on causal mechanisms (e.g., soil moisture, precipitation) that affect sagebrush community structure in this region. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号