首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
膜联蛋白A2(annexin A2,ANXA2)可促进人结直肠癌的侵袭和迁移。然而,ANXA2在乳腺癌中的作用以及调节机制尚缺乏系统的研究。本研究旨在探讨微小RNA-206(microRNA-206,miR-206)如何调节ANXA2基因的表达,进而影响乳腺癌的侵袭。通过基因预测软件TargetScan (TargetScan V5.2)找到与ANXA2的3′UTR区互补结合的miR-206。运用实时定量 PCR(qRT-PCR)检测不同乳腺癌细胞系中miR-206的表达水平,发现低侵袭性乳腺癌MCF-7细胞株miR-206 表达量明显高于高侵袭性乳腺癌细胞株MDA-231、MDA-435和T47D。运用转染技术将 miR-206 质粒及miR-206 抑制剂转入乳腺癌细胞系MDA-231后,qRT-PCR检测转染后各组细胞中miR-206的表达情况,结果显示转染成功。用Western印迹法检测各组细胞中ANXA2的表达情况,结果显示,miR-206负向调控ANXA2蛋白的表达。 qRT-PCR显示,过表达乳腺癌细胞内miR-206 后,ANXA2 mRNA基本没有变化。结果显示,miR-206是在翻译水平上影响ANXA2蛋白的表达。荧光素酶实验显示:miR-206能特异性地与ANXA2 mRNA的3′UTR结合,抑制其荧光素酶活性。Transwell侵袭实验检测各组细胞的侵袭能力。结果显示,过表达miR-206后,乳腺癌细胞体外侵袭能力明显减弱。综上所述,miR-206 通过靶向结合癌基因ANXA2 mRNA的3′UTR区,抑制ANXA2蛋白翻译,从而抑制了乳腺癌细胞的侵袭。因此,miR-206有望成为抑制乳腺癌侵袭与治疗乳腺癌的新靶点和生物学标记物。  相似文献   

4.
miR-206, a member of the so-called myomiR family, is largely acknowledged as a specific, positive regulator of skeletal muscle differentiation. A growing body of evidence also suggests a tumor suppressor function for miR-206, as it is frequently downregulated in various types of cancers. In this study, we show that miR-206 directly targets cyclin D1 and contributes to the regulation of CCND1 gene expression in both myogenic and non-muscle, transformed cells. We demonstrate that miR-206, either exogenous or endogenous, reduces cyclin D1 levels and proliferation rate in C2C12 cells without promoting differentiation, and that miR-206 knockdown in terminally differentiated C2C12 cells leads to cyclin D1 accumulation in myotubes, indicating that miR-206 might be involved in the maintenance of the post-mitotic state. Targeting of cyclin D1 might also account, at least in part, for the tumor-suppressor activity suggested for miR-206 in previous studies. Accordingly, the analysis of neoplastic and matched normal lung tissues reveals that miR-206 downregulation in lung tumors correlates, in most cases, with higher cyclin D1 levels. Moreover, gain-of-function experiments with cancer-derived cell lines and with in vitro transformed cells indicate that miR-206-mediated cyclin D1 repression is directly coupled to growth inhibition. Altogether, our data highlight a novel activity for miR-206 in skeletal muscle differentiation and identify cyclin D1 as a major target that further strengthens the tumor suppressor function proposed for miR-206.  相似文献   

5.
Previously, we found that basal-like ductal carcinoma in situ (DCIS) contains cancer stem-like cells. Here, we characterize stem-like subpopulations in a model of basal-like DCIS and identify subpopulations of CD49f+/CD24− stem-like cells that possess aldehyde dehydrogenase 1 activity. We found that these cells show enhanced migration potential compared with non-stem DCIS cells. We also found that the chemopreventive agent sulforaphane can target these DCIS stem-like cells, reduce aldehyde dehydrogenase 1 (ALDH1) expression, and decrease mammosphere and progenitor colony formation. Furthermore, we characterized exosomal trafficking of microRNAs in DCIS and found that several microRNAs (miRs) including miR-140, miR-29a, and miR-21 are differentially expressed in exosomes from DCIS stem-like cells. We found that SFN treatment could reprogram DCIS stem-like cells as evidenced by significant changes in exosomal secretion more closely resembling that of non-stem cancer cells. Finally, we demonstrated that exosomal secretion of miR-140 might impact signaling in nearby breast cancer cells.  相似文献   

6.
7.
8.
传统的核酸检测技术如放射性核素、荧光、化学修饰的探针以及核酸扩增等技术无法检测活细胞中核酸的表达量。而活细胞RNA纳米检测技术和传统的检测技术相比,利用纳米金颗粒为探针能对活细胞进行检测,实验步骤更为简单,可以在自然的、无扩增的条件下观察RNA,这可真实地反应基因表达与表型之间的关系。miRNA是一类非编码RNA,其长度为20~24个碱基,在生命活动中起重要的作用。本文应用活细胞RNA检测纳米技术结合荧光定量PCR分别检测正常的乳腺上皮细胞系及乳腺上皮癌细胞系中内源性miR-142-3p的表达,发现乳腺癌细胞系内源性miR-142-3p的表达显著高于正常乳腺上皮细胞系中miR-142-3p的表达,结果提示miR-142-3p可能在乳腺癌细胞发生发展中起到调控作用。  相似文献   

9.
10.
11.
The emerging concept of generating cancer stem cells from epithelial-mesenchymal transition has attracted great interest; however, the factors and molecular mechanisms that govern this putative tumor-initiating process remain largely elusive. We report here that miR-200a not only regulates epithelial-mesenchymal transition but also stem-like transition in nasopharyngeal carcinoma cells. We first showed that stable knockdown of miR-200a promotes the transition of epithelium-like CNE-1 cells to the mesenchymal phenotype. More importantly, it also induced several stem cell-like traits, including CD133+ side population, sphere formation capacity, in vivo tumorigenicity in nude mice, and stem cell marker expression. Consistently, stable overexpression of miR-200a switched mesenchyme-like C666-1 cells to the epithelial state, accompanied by a significant reduction of stem-like cell features. Furthermore, in vitro differentiation of the C666-1 tumor sphere resulted in diminished stem-like cell population and miR-200a induction. To investigate the molecular mechanism, we demonstrated that miR-200a controls epithelial-mesenchymal transition by targeting ZEB2, although it regulates the stem-like transition differentially and specifically by β-catenin signaling. Our findings reveal for the first time the function of miR-200a in shifting nasopharyngeal carcinoma cell states via a reversible process coined as epithelial-mesenchymal to stem-like transition through differential and specific mechanisms.  相似文献   

12.
13.
14.
X Kong  G Li  Y Yuan  Y He  X Wu  W Zhang  Z Wu  T Chen  W Wu  PE Lobie  T Zhu 《PloS one》2012,7(8):e41523
Focal adhesion kinase (FAK) is an important mediator of extracellular matrix integrin signaling, cell motility, cell proliferation and cell survival. Increased FAK expression is observed in a variety of solid human tumors and increased FAK expression and activity frequently correlate with metastatic disease and poor prognosis. Herein we identify miR-7 as a direct regulator of FAK expression. miR-7 expression is decreased in malignant versus normal breast tissue and its expression correlates inversely with metastasis in human breast cancer patients. Forced expression of miR-7 produced increased E-CADHERIN and decreased FIBRONECTIN and VIMENTIN expression in breast cancer cells. The levels of miR-7 expression was positively correlated with E-CADHERIN mRNA and negatively correlated with VIMENTIN mRNA levels in breast cancer samples. Forced expression of miR-7 in aggressive breast cancer cell lines suppressed tumor cell monolayer proliferation, anchorage independent growth, three-dimensional growth in Matrigel, migration and invasion. Conversely, inhibition of miR-7 in the HBL-100 mammary epithelial cell line promoted cell proliferation and anchorage independent growth. Rescue of FAK expression reversed miR-7 suppression of migration and invasion. miR-7 also inhibited primary breast tumor development, local invasion and metastatic colonization of breast cancer xenografts. Thus, miR-7 expression is decreased in metastatic breast cancer, correlates with the level of epithelial differentiation of the tumor and inhibits metastatic progression.  相似文献   

15.
Human growth hormone (hGH) plays critical roles in pubertal mammary gland growth, development, and sexual maturation. Accumulated studies have reported that autocrine/paracrine hGH is an orthotopically expressed oncoprotein that promotes normal mammary epithelial cell oncogenic transformation. Autocrine/paracrine hGH has also been reported to promote mammary epithelial cell epithelial-mesenchymal transition (EMT) and invasion. However, the underlying mechanism remains largely obscure. MicroRNAs (miRNAs) are reported to be involved in regulation of multiple cellular functions of cancer. To determine whether autocrine/paracrine hGH promotes EMT and invasion through modulation of miRNA expression, we performed microarray profiling using MCF-7 cells stably expressing wild type or a translation-deficient hGH gene and identified miR-96-182-183 as an autocrine/paracrine hGH-regulated miRNA cluster. Forced expression of miR-96-182-183 conferred on epithelioid MCF-7 cells a mesenchymal phenotype and promoted invasive behavior in vitro and dissemination in vivo. Moreover, we observed that miR-96-182-183 promoted EMT and invasion by directly and simultaneously suppressing BRMS1L (breast cancer metastasis suppressor 1-like) gene expression. miR-96 and miR-182 also targeted GHR, providing a potential negative feedback loop in the hGH-GHR signaling pathway. We further demonstrated that autocrine/paracrine hGH stimulated miR-96-182-183 expression and facilitated EMT and invasion via STAT3 and STAT5 signaling. Consistent with elevated expression of autocrine/paracrine hGH in metastatic breast cancer tissue, miR-96-182-183 expression was also remarkably enhanced. Hence, we delineate the roles of the miRNA-96-182-183 cluster and elucidate a novel hGH-GHR-STAT3/STAT5-miR-96-182-183-BRMS1L-ZEB1/E47-EMT/invasion axis, which provides further understanding of the mechanism of autocrine/paracrine hGH-stimulated EMT and invasion in breast cancer.  相似文献   

16.
17.
18.
Estrogen receptors (ERs) are involved in the development of many types of malignant tumors, in particular, breast cancer. Among others, ERs affect cell growth, proliferation, and differentiation. The microRNA (miRNA) miR-142-3p has been shown to inhibit carcinogenesis by regulating various cellular processes, including cell cycle progression, cell migration, apoptosis, and invasion. It does so via targeting molecules involved in a range of signaling pathways. We surgically collected 20 ER-positive breast cancer samples, each with matched adjacent normal breast tissue, and measured the expression of miR-142-3p via quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics methods, luciferase reporter assay, qRT-PCR, and western blot analysis were used to assess whether miR-142-3p could target ESR1, which encodes the estrogen receptor, in ER-positive breast cancer cells and patient samples. We also restored miRNA expression and performed cell viability, cytotoxicity, and colony formation assays. Western blot analysis and qRT-PCR were used to study the expression of apoptosis and stemness markers. We found that miR-142-3p is downregulated in ER-positive breast cancers. Restoration of miR-142-3p expression in ER-positive breast cancer cells reduced cell viability, induced apoptosis via the intrinsic pathway and decreased both colony formation and the expression of stem cell markers. Bioinformatic analysis predicted miR-142-3p could bind to 3′-untranslated region ESR1 messenger RNA (mRNA). Consistently, we demonstrated that miR-142-3p reduced luciferase activity in ER-positive breast cancer cells, and decreased ESR1 expression in both mRNA and protein levels. The results revealed miR-142-3p and ESR1 expression correlated negatively in ER-positive breast cancer samples. The results suggest miR-142-3p acts as a tumor suppressor via multiple mechanisms. Thus, restoration of miR-142-3p expression, for example, via miRNA replacement therapy, may represent an effective strategy for the treatment of ER-positive breast cancer patients.  相似文献   

19.
20.
Cyclin D1 and its binding partners CDK4/6 are essential regulators of cell cycle progression and are implicated in cancer progression. Our aim was to investigate a potential regulatory role of these proteins in other essential tumor biological characteristics. Using a panel of breast cancer cell lines and primary human breast cancer samples, we have demonstrated the importance of these cell cycle regulators in both migration and stem-like cell activity. siRNA was used to target cyclin D1 and CDK4/6 expression, having opposing effects on both migration and stem-like cell activity dependent upon estrogen receptor (ER) expression. Inhibition of cyclin D1 or CDK4/6 increases or decreases migration and stem-like cell activity in ER−ve (ER-negative) and ER+ve (ER-positive) breast cancer, respectively. Furthermore, overexpressed cyclin D1 caused decreased migration and stem-like cell activity in ER−ve cells while increasing activity in ER+ve breast cancer cells. Treatment of breast cancer cells with inhibitors of cyclin D1 and CDK4/6 (Flavopiridol/PD0332991), currently in clinical trials, mimicked the effects observed with siRNA treatment. Re-expression of ER in two ER−ve cell lines was sufficient to overcome the effects of either siRNA or clinical inhibitors of cyclin D1 and CDK4/6.   In conclusion, cyclin D1 and CDK4/6 have alternate roles in regulation of migration and stem-like cell activity. Furthermore, these effects are highly dependent upon expression of ER. The significance of these results adds to our general understanding of cancer biology but, most importantly, could be used diagnostically to predict treatment response to cell cycle inhibition in breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号