首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Schwann cells (SCs) are hitherto regarded as the most promising candidates for viable cell-based therapy to peripheral nervous system (PNS) injuries or degenerative diseases. However, the extreme drawbacks of transplanting autologous SCs for clinical applications still represent a significant bottleneck in neural regenerative medicine, mainly owing to the need of sacrificing a functional nerve to generate autologous SCs and the nature of slow expansion of the SCs. Thus, it is of great importance to establish an alternative cell system for the generation of sufficient SCs. Here, we demonstrated that adipose-derived stem cells (ADSCs) of rat robustly give rise to morphological, phenotypic and functional SCs using an optimized protocol. After undergoing a 3-week in vitro differentiation, almost all of treated ADSCs exhibited spindle shaped morphology similar to genuine SCs and expressed SC markers GFAP and S100. Most importantly, apart from acquisition of SC antigenic and biochemical features, the ADSC-derived SCs were functionally identical to native SCs as they possess a potential ability to form myelin, and secret nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and glia-derived neurotrophic factor (GDNF). The current study may provide an ideal strategy for harvesting sufficient SCs for cell-based treatment of various peripheral nerve injuries or disorders.  相似文献   

2.
3.
Peripheral nerve injury results in limited nerve regeneration and severe functional impairment. Mesenchymal stem cells (MSCs) are a remarkable tool for peripheral nerve regeneration. The involvement of human umbilical cord MSC‐derived extracellular vesicles (hUCMSC‐EVs) in peripheral nerve regeneration, however, remains unknown. In this study, we evaluated functional recovery and nerve regeneration in rats that received hUCMSC‐EV treatment after nerve transection. We observed that hUCMSC‐EV treatment promoted the recovery of motor function and the regeneration of axons; increased the sciatic functional index; resulted in the generation of numerous axons and of several Schwann cells that surrounded individual axons; and attenuated the atrophy of the gastrocnemius muscle. hUCMSC‐EVs aggregated to rat nerve defects, down‐regulated interleukin (IL)‐6 and IL‐1β, up‐regulated IL‐10 and modulated inflammation in the injured nerve. These effects likely contributed to the promotion of nerve regeneration. Our findings indicate that hUCMSC‐EVs can improve functional recovery and nerve regeneration by providing a favourable microenvironment for nerve regeneration. Thus, hUCMSC‐EVs have considerable potential for application in the treatment of peripheral nerve injury.  相似文献   

4.
Exosomes extracted from mesenchymal stem cells (MSCs) was reported to reduce myocardial ischemia/reperfusion damage. Besides, stromal-derived factor 1 (SDF1a) functions as cardiac repair after myocardial infarction (MI). Therefore, the present study aims to identify whether exosomes (Exo) released from SDF1-overexpressing MSCs display a beneficial effect on ischemic myocardial infarction. Initially, a gain-of-function study was performed to investigate the function of SDF1 in ischemic myocardial cells and cardiac endothelial cells. Coculture experiments were performed to measure potential exosomic transfer of SDF1 from MSCs to ischemic myocardial cells and cardiac endothelial cells. During the coculture experiments, exosome secretion was disrupted by neutral sphingomyelinase inhibitor GW4869 and upregulated exosomal SDF1 using SDF1 plasmid. Effects of Exo-SDF1 on cardiac function in MI mice were investigated in vivo. MSCs suppressed myocardial cell apoptosis and promoted microvascular regeneration of endothelial cells through secretion of exosomes. The addition of GW4869 led to increased apoptotic capacity of myocardial cells, decreased microvascular formation ability of endothelial cells, enhanced autophagy ability, and elevated Beclin-1 level as well as ratio of LC3II/LC3I. Overexpression of SDF1 and Exo-SDF1 inhibited apoptosis and autophagy of myocardial cells, but promoted tube formation of endothelial cells. The interference of PI3K signaling pathway promoted apoptosis and autophagy of myocardial cells, but inhibited tube formation of endothelial cells. SDF1 activated the PI3K signaling pathway. Exo-SDF1 protected cardiac function of MI mice and inhibited myocardial tissue damage. This study provided evidence that SDF1 overexpression in MSCs-derived exosomes inhibited autophagy of ischemic myocardial cells and promoted microvascular production of endothelial cells.  相似文献   

5.
低温保存许旺细胞对周围神经再生的作用   总被引:1,自引:0,他引:1  
目的:比较原代培养许旺细胞(Schwann cells,SCs)和冷冻保存的SCs移植对损伤后坐骨神经再生的作用。方法:原代培养和液氮保存的SCs分别移植到桥接缺损坐骨神经的硅胶管内。在移植后不同时间(第6和8周末),硅胶管远端神经干内注射HRP,逆行追踪背根神经节和脊髓前角的标记神经元数量;测量再生神经纤维的复合动作电位传导速度;电镜观察再生神经纤维的髓鞘形成。结果:原代培养和冷冻保存SCs在移植后不同时间其背根神经节和脊髓前角神经元HRP标记细胞数量、再生神经纤维的复合动作电位传导速度基本一致,再生神经纤维髓鞘的形成未见明显差别。结论:冷冻保存的SCs仍具有促进损伤后周围神经再生的能力。  相似文献   

6.
Schwann cells (SCs) are fundamental for development, myelination and regeneration in the peripheral nervous system. Slow growth rate and difficulties in harvesting limit SC applications in regenerative medicine. Several molecules, including receptors for neurosteroids and neurotransmitters, have been suggested to be implicated in regulating physiology and regenerative potential of SCs. Adipose-derived stem cells (ASCs) can be differentiated into SC-like phenotype (dASC) sharing morphological and functional properties with SC, thus representing a valid SC alternative. We have previously shown that dASC express γ-aminobutyric-acid receptors, which modulate their proliferation and neurotrophic potential, although little is known about the role of other neurotransmitters in ASC. In this study, we investigated the expression of purinergic receptors in dASC. Using reverse transriptase (RT)-PCR, western blot analyses and immunocytochemistry, we have demonstrated that ASCs express P2X3, P2X4 and P2X7 purinoceptors. Differentiation of ASCs towards glial phenotype was accompanied by upregulation of P2X4 and P2X7 receptors. Using Ca2+-imaging techniques, we have shown that stimulation of purinoceptors with adenosine 5′-triphosphate (ATP) triggers intracellular Ca2+ signals, indicating functional activity of these receptors. Whole-cell voltage clamp recordings showed that ATP and BzATP induced ion currents that can be fully inhibited with specific P2X7 antagonists. Finally, using cytotoxicity assays we have shown that the increase of intracellular Ca2+ leads to dASC death, an effect that can be prevented using a specific P2X7 antagonist. Altogether, these results show, for the first time, the presence of functional P2X7 receptors in dASC and their link with critical physiological processes such as cell death and survival. The presence of these novel pharmacological targets in dASC might open new opportunities for the management of cell survival and neurotrophic potential in tissue engineering approaches using dASC for nerve repair.  相似文献   

7.
Mesenchymal stem cells (MSCs) play an important role in chemoresistance. Exosomes have been reported to modify cellular phenotype and function by mediating cell-cell communication. In this study, we aimed to investigate whether exosomes derived from MSCs (MSC-exosomes) are involved in mediating the resistance to chemotherapy in gastric cancer and to explore the underlying molecular mechanism. We found that MSC-exosomes significantly induced the resistance of gastric cancer cells to 5-fluorouracil both in vivo and ex vivo. MSC-exosomes antagonized 5-fluorouracil-induced apoptosis and enhanced the expression of multi-drug resistance associated proteins, including MDR, MRP and LRP. Mechanistically, MSC-exosomes triggered the activation of calcium/calmodulin-dependent protein kinases (CaM-Ks) and Raf/MEK/ERK kinase cascade in gastric cancer cells. Blocking the CaM-Ks/Raf/MEK/ERK pathway inhibited the promoting role of MSC-exosomes in chemoresistance. Collectively, MSC-exosomes could induce drug resistance in gastric cancer cells by activating CaM-Ks/Raf/MEK/ERK pathway. Our findings suggest that MSC-exosomes have profound effects on modifying gastric cancer cells in the development of drug resistance. Targeting the interaction between MSC-exosomes and cancer cells may help improve the efficacy of chemotherapy in gastric cancer.  相似文献   

8.
Abstract

The aim of this study is to develop a nanofibrous polymeric nerve conduit with Schwann cells (SCs) and to evaluate its efficiency on the promotion of functional and locomotive activities in rats. The conduits were implanted into a 30-mm gap in the sciatic nerves of the rats. Four months after surgery, the rats were monitored and evaluated by behavioral analyses such as toe out angle, toe spreading analysis, walking track analysis, extensor postural thrust, open-field analysis, swimming test and nociceptive function, four months post surgery. Four months post-operatively, the results from behavioral analyses demonstrated that in the grafted groups especially in the grafted group with SCs, the rat sciatic nerve trunk had been reconstructed with functional recovery such as walking, swimming and recovery of nociceptive function. This study proves the feasibility of artificial conduit with SCs for nerve regeneration by bridging a longer defect in the rat model.  相似文献   

9.
microRNA-126 (miR-126), an endothelial-specific miRNA, is associated with vascular homeostasis and angiogenesis. However, the efficiency of miR-126-based treatment is partially compromised due to the low efficiency of miRNA delivery in vivo. Lately, exosomes have emerged as a natural tool for therapeutic molecule delivery. Herein, we investigated whether exosomes derived from bone marrow mesenchymal stem cells (BMMSCs) can be utilized to deliver miR-126 to promote angiogenesis. Exosomes were isolated from BMMSCs overexpressed with miR-126 (Exo-miR-126) by ultracentrifugation. In vitro study, Exo-miR-126 treatment promoted the proliferation, migration and angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, the gene/protein expression of angiogenesis-related vascular endothelial growth factor (VEGF) and angiotensin-1 (Ang-1) were up-regulated after incubation with Exo-miR-126. Additionally, the expression level of phosphoinositol-3 kinase regulatory subunit 2 (PIK3R2) showed an inverse correlation with miR-126 in HUVECs. Particularly, the Exo-miR-126 treatment contributed to enhanced angiogenesis of HUVECs by targeting PIK3R2 to activate the PI3K/Akt signalling pathway. Similarly, Exo-miR-126 administration profoundly increased the number of newly formed capillaries in wound sites and accelerated the wound healing in vivo. The results demonstrate that exosomes derived from BMMSCs combined with miR-126 may be a promising strategy to promote angiogenesis.  相似文献   

10.
Tendon injuries are common musculoskeletal system disorders in clinical, but the regeneration ability of tendon is limited. Tendon stem cells (TSCs) have shown promising effect on tissue engineering and been used for the treatment of tendon injury. Exosomes that serve as genetic information carriers have been implicated in many diseases and physiological processes, but effect of exosomes from TSCs on tendon injury repair is unclear. The aim of this study is to make clear that the effect of exosomes from TSCs on tendon injury healing. Exosomes were harvested from conditioned culture media of TSCs by a sequential centrifugation process. Rat Achilles tendon tendinopathy model was established by collagenase‐I injection. This was followed by intra‐Achilles‐tendon injection with TSCs or exosomes. Tendon healing and matrix degradation were evaluated by histology analysis and biomechanical test at the post‐injury 5 weeks. In vitro, TSCs treated with interleukin 1 beta were added by conditioned medium including exosomes or not, or by exosomes or not. Tendon matrix related markers and tenogenesis related markers were measured by immunostaining and western blot. We found that TSCs injection and exosomes injection significantly decreased matrix metalloproteinases (MMP)‐3 expression, increased expression of tissue inhibitor of metalloproteinase‐3 (TIMP‐3) and Col‐1a1, and increased biomechanical properties of the ultimate stress and maximum loading. In vitro, conditioned medium with exosomes and exosomes also significantly decreased MMP‐3, and increased expression of tenomodulin, Col‐1a1 and TIMP‐3. Exosomes from TSCs could be an ideal therapeutic strategy in tendon injury healing for its balancing tendon extracellular matrix and promoting the tenogenesis of TSCs.  相似文献   

11.
Nerous system diseases, both central and peripheral, bring an incredible burden onto patients and enormously reduce their quality of life. Currently, there are still no effective treatments to repair nerve lesions that do not have side effects. Stem cell–based therapies, especially those using dental stem cells, bring new hope to neural diseases. Dental stem cells, derived from the neural crest, have many characteristics that are similar to neural cells, indicating that they can be an ideal source of cells for neural regeneration and repair. This review summarizes the neural traits of all the dental cell types, including DPSCs, PDLCs, DFCs, APSCs and their potential applications in nervous system diseases. We have summed up the advantages of dental stem cells in neural repair, such as their neurotrophic and neuroprotective traits, easy harvest and low rejective reaction rate, among others. Taken together, dental stem cells are an ideal cell source for neural tissue regeneration and repair.  相似文献   

12.
Peripheral myelination is a complicated process, wherein Schwann cells (SCs) promote the formation of the myelin sheath around the axons of peripheral neurons. Fibroblasts are the second resident cells in the peripheral nerves; however, the precise function of fibroblasts in SC-mediated myelination has rarely been examined. Here, we show that exosomes derived from fibroblasts boost myelination-related gene expression in SCs. We used exosome sequencing, together with bioinformatic analysis, to demonstrate that exosomal microRNA miR-673-5p is capable of stimulating myelin gene expression in SCs. Subsequent functional studies revealed that miR-673-5p targets the regulator of mechanistic target of the rapamycin (mTOR) complex 1 (mTORC1) tuberous sclerosis complex 2 in SCs, leading to the activation of downstream signaling pathways including mTORC1 and sterol-regulatory element binding protein 2. In vivo experiments further confirmed that miR-673-5p activates the tuberous sclerosis complex 2/mTORC1/sterol-regulatory element binding protein 2 axis, thus promoting the synthesis of cholesterol and related lipids and subsequently accelerating myelin sheath maturation in peripheral nerves. Overall, our findings revealed exosome-mediated cross talk between fibroblasts and SCs that plays a pivotal role in peripheral myelination. We propose that exosomes derived from fibroblasts and miR-673-5p might be useful for promoting peripheral myelination in translational medicine.  相似文献   

13.
Hepatic ischaemia reperfusion injury (HIRI) is a major factor leading to liver dysfunction after liver resection and liver transplantation. Adipose-derived mesenchymal stem cells (ADSCs) have potential therapeutic effects on HIRI. Exosomes derived from ADSCs (ADSCs-exo) have been widely studied as an alternative of ADSCs therapy. Thus, the aim of this study was to evaluate the potential protective effect and related mechanism of ADSCs-exo on HIRI subsequent to hepatectomy. Rats were randomly divided into four groups: Sham, I30R+PH, ADSCs and ADSCs-exo group. After 24 h of reperfusion, liver and serum of the rats were immediately collected. ADSCs-exo improved liver function, inhibited oxidative stress and reduced apoptosis of hepatocytes in HIRI subsequent to hepatectomy in rats. ADSCs-exo significantly promoted the recovery of mitochondrial function, markedly increased the content of ATP in the liver tissue, and improved the ultrastructure of mitochondria in hepatocytes. Moreover, ADSCs-exo significantly increased the expression of OPA-1, MFN-1 and MFN-2 proteins related to mitochondrial fusion, while DRP-1 and Fis-1 mRNA and protein expression associated with mitochondrial fission were significantly decreased after the treatment with ADSCs-exo. In addition, ADSCs-exo significantly increased the expression of PGC-1α, NRF-1 and TFAM genes and proteins related to mitochondrial biogenesis. ADSCs-exo improves liver function induced by HIRI subsequent to hepatectomy in rats and maintains mitochondrial homeostasis by inhibiting mitochondrial fission, promoting mitochondrial fusion and promoting mitochondrial biogenesis. Therefore, ADSCs-exo may be considered as a potential promising alternative to ADSCs in the treatment of HIRI subsequent to hepatectomy.  相似文献   

14.
Renal ischemia/reperfusion (I/R) injury is the main reason for acute kidney injury (AKI) and is closely related to high morbidity and mortality. In this study, we found that exosomes from human-bone-marrow-derived mesenchymal stem cells (hBMSC-Exos) play a protective role in hypoxia/reoxygenation (H/R) injury. hBMSC-Exos were enriched in miR-199a-3p, and hBMSC-Exo treatment increased the expression level of miR-199a-3p in renal cells. We further explored the function of miR-199a-3p on H/R injury. miR-199a-3p was knocked down in hBMSCs with a miR-199a-3p inhibitor. HK-2 cells cocultured with miR-199a-3p-knockdown hBMSCs were more susceptible to H/R injury and showed more apoptosis than those cocultured with hBMSCs or miR-199a-3p-overexpressing hBMSCs. Meanwhile, we found that HK-2 cells exposed to H/R treatment incubated with hBMSC-Exos decreased semaphorin 3A (Sema3A) and activated the protein kinase B (AKT) and extracellular-signal-regulated kinase (ERK) pathways. However, HK-2 cells cocultured with miR-199a-3p-knockdown hBMSCs restored Sema3A expression and blocked the activation of the AKT and ERK pathways. Moreover, knocking down Sema3A could reactivate the AKT and ERK pathways suppressed by a miR-199a-3p inhibitor. In vivo, we injected hBMSC-Exos into mice suffering from I/R injury; this treatment induced functional recovery and histologic protection and reduced cleaved caspase-3 and Sema3A expression levels, as shown by immunohistochemistry. On the whole, this study demonstrated an antiapoptotic effect of hBMSC-Exos, which protected against I/R injury, via delivering miR-199a-3p to renal cells, downregulating Sema3A expression and thereby activating the AKT and ERK pathways. These findings reveal a novel mechanism of AKI treated with hBMSC-Exos and provide a therapeutic method for kidney diseases.  相似文献   

15.
The optimal source of stem cells for regenerative medicine is a major question. Embryonic stem (ES) cells have shown promise for pluripotency but have ethical issues and potential to form teratomas. Pluripotent stem cells have been produced from skin cells by either viral‐, plasmid‐ or transposon‐mediated gene transfer. These stem cells have been termed induced pluripotent stem cells or iPS cells. iPS cells may also have malignant potential and are inefficiently produced. Embryonic stem cells may not be suited for individualized therapy, since they can undergo immunologic rejection. To address these fundamental problems, our group is developing hair follicle pluripotent stem (hfPS) cells. Our previous studies have shown that mouse hfPS cells can differentiate to neurons, glial cells in vitro, and other cell types, and can promote nerve and spinal cord regeneration in vivo. hfPS cells are located above the hair follicle bulge in what we have termed the hfPS cell area (hfPSA) and are nestin positive and keratin 15 (K‐15) negative. Human hfPS cells can also differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. In the present study, human hfPS cells were transplanted in the severed sciatic nerve of the mouse where they differentiated into glial fibrillary‐acidic‐protein (GFAP)‐positive Schwann cells and promoted the recovery of pre‐existing axons, leading to nerve generation. The regenerated nerve recovered function and, upon electrical stimulation, contracted the gastrocnemius muscle. The hfPS cells can be readily isolated from the human scalp, thereby providing an accessible, autologous and safe source of stem cells for regenerative medicine that have important advantages over ES or iPS cells. J. Cell. Biochem. 107: 1016–1020, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
17.
Exosomes are served as substitutes for stem cell therapy, playing important roles in mediating heart repair during myocardial infarction injury. Evidence have indicated that lipopolysaccharide (LPS) pre‐conditioning bone marrow‐derived mesenchymal stem cells (BMSCs) and their secreted exosomes promote macrophage polarization and tissue repair in several inflammation diseases; however, it has not been fully elucidated in myocardial infarction (MI). This study aimed to investigate whether LPS‐primed BMSC‐derived exosomes could mediate inflammation and myocardial injury via macrophage polarization after MI. Here, we found that exosomes derived from BMSCs, in both Exo and L‐Exo groups, increased M2 macrophage polarization and decreased M1 macrophage polarization under LPS stimulation, which strongly depressed LPS‐dependent NF‐κB signalling pathway and partly activated the AKT1/AKT2 signalling pathway. Compared with Exo, L‐Exo had superior therapeutic effects on polarizing M2 macrophage in vitro and attenuated the post‐infarction inflammation and cardiomyocyte apoptosis by mediating macrophage polarization in mice MI model. Consequently, we have confidence in the perspective that low concentration of LPS pre‐conditioning BMSC‐derived exosomes may develop into a promising cell‐free treatment strategy for clinical treatment of MI.  相似文献   

18.
近年来,间充质干细胞(mesenchymal stem cells,MSCs)衍生的外泌体在组织再生领域引发许多关注。MSCs衍生外泌体作为细胞间通讯的信号分子,具有天然靶向性强、免疫原性低等特点,其通过MSCs旁分泌途径被细胞吸收,参与调控发挥促进细胞或组织再生功能。水凝胶作为再生医学领域的支架材料,具有良好的生物相容性、降解性等特点。将二者制成复合物联合使用后不仅可以提高外泌体在病变位置的滞留时间,且可通过原位注射等方法提高外泌体到达病变位置的剂量,在病变区域治疗效果显著且持续性改善。文中总结了现阶段外泌体与水凝胶复合物材料共同作用促进组织修复、再生的研究结果,以期为未来组织再生领域中的相关研究工作提供借鉴。  相似文献   

19.
The major difficulty in Schwann cell (SC) purification is contamination by fibroblasts, which usually become the predominant cell type during SC enrichment in vitro. Current reported measures are mainly limited by either high cost or complicated procedures with low cell yields or purity. Our objectives have been to develop an efficient, easily applicable, rapid method to obtain highly purified SC from the sciatic nerve of newborn rats. The method involves two rounds of purification to eliminate fibroblasts with the novel combined use of cytosine-B-arabinoside hydrochloride (Ara-C) action and differential cell detachment. Cultured cells were first treated with Ara-C for 24 h. The medium was replaced with the growth medium containing 20 ng/ml human heregulin1-β1 extracellular domain (HRG1-β1 ECD). After another 48 h in culture, the cells were treated with 0.05% trypsin, following which SCs, but not fibroblasts, were easily detached from the dishes. The advantage of this method is that the two steps can eliminate the fibroblasts complementarily. Ara-C eliminates most of the fibroblasts growing among SCs, whereas the differential cell detachment technique removes the remainder growing under or interacting with the SC layer. A purity of more than 99% SCs has been obtained, as confirmed by cell morphology and immunostaining. The purified SCs have a spindle-shaped, bipolar, and sometimes tripolar morphology, align in fascicles, and express S-100. The whole procedure takes about 10 days from primary culture to the purified SCs growing to confluence (only half the time reported previously). This protocol provides an alternative method for investigating peripheral nerve regeneration and potentially could be used to produce enough SCs to construct artificial nerve scaffolds in vitro. This work was supported by Tsinghua-Yue-Yuen Medical Sciences Fund, the National Natural Science Foundation of China (contract grant numbers: 30670528, 30700848, 30772443), Beijing Municipal Science & Technology Commission (BMSTC, contract grant number: H060920050430), National Basic Research Program of China (also called the 973 Program, contract grant number: 2005CB623905), and the National Natural Science Foundation of Beijing (contract grant number: 7082090).  相似文献   

20.
Midazolam, a benzodiazepine derivative, is widely used for sedation and surgery. However, previous studies have demonstrated that Midazolam is associated with increased risks of congenital malformations, such as dwarfism, when used during early pregnancy. Recent studies have also demonstrated that Midazolam suppresses osteogenesis of mesenchymal stem cells (MSCs). Given that hypertrophic chondrocytes can differentiate into osteoblast and osteocytes and contribute to endochondral bone formation, the effect of Midazolam on chondrogenesis remains unclear. In this study, we applied a human MSC line, the KP cell, to serve as an in vitro model to study the effect of Midazolam on chondrogenesis. We first successfully established an in vitro chondrogenic model in a micromass culture or a 2D high‐density culture performed with TGF‐β‐driven chondrogenic induction medium. Treatment of the Midazolam dose‐dependently inhibited chondrogenesis, examined using Alcian blue‐stained glycosaminoglycans and the expression of chondrogenic markers, such as SOX9 and type II collagen. Inhibition of Midazolam by peripheral benzodiazepine receptor (PBR) antagonist PK11195 or small interfering RNA rescued the inhibitory effects of Midazolam on chondrogenesis. In addition, Midazolam suppressed transforming growth factor‐β‐induced Smad3 phosphorylation, and this inhibitory effect could be rescued using PBR antagonist PK11195. This study provides a possible explanation for Midazolam‐induced congenital malformations of the musculoskeletal system through PBR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号