首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Here, we present a comparative analysis of the nodulation processes of Aeschynomene afraspera and A. indica that differ in their requirement for Nod factors (NF) to initiate symbiosis with photosynthetic bradyrhizobia. The infection process and nodule organogenesis was examined using the green fluorescent protein-labeled Bradyrhizobium sp. strain ORS285 able to nodulate both species. In A. indica, when the NF-independent strategy is used, bacteria penetrated the root intercellularly between axillary root hairs and invaded the subepidermal cortical cells by invagination of the host cell wall. Whereas the first infected cortical cells collapsed, the infected ones immediately beneath kept their integrity and divided repeatedly to form the nodule. In A. afraspera, when the NF-dependent strategy is used, bacteria entered the plant through epidermal fissures generated by the emergence of lateral roots and spread deeper intercellularly in the root cortex, infecting some cortical cells during their progression. Whereas the infected cells of the lower cortical layers divided rapidly to form the nodule, the infected cells of the upper layers gave rise to an outgrowth in which the bacteria remained enclosed in large tubular structures. Together, two distinct modes of infection and nodule organogenesis coexist in Aeschynomene legumes, each displaying original features.  相似文献   

2.
A carotenoid biosynthesis gene cluster involved in canthaxanthin production was isolated from the photosynthetic Bradyrhizobium sp. strain ORS278. This cluster includes five genes identified as crtE, crtY, crtI, crtB, and crtW that are organized in at least two operons. The functional assignment of each open reading frame was confirmed by complementation studies.  相似文献   

3.
We isolated and characterized nodA genes from photosynthetic and non-photosynthetic rhizobia nodulating the legume genus Aeschynomene, and found that the nodA sequence from photosynthetic stem-nodulating bacteria was phylogenetically distant from the other already described nodA genes. Characterization of the photosynthetic strain ORS285 common nod gene cluster (nodABC) showed, upstream of nodA, the presence of a new insertion sequence element belonging to the IS3 family and specific to a group of photosynthetic strains from Aeschynomene.  相似文献   

4.
World Journal of Microbiology and Biotechnology - Daptomycin, produced by Streptomyces roseosporus is a novel cyclic lipopeptide antibiotic for treatment of Gram-positive bacteria caused...  相似文献   

5.
Glutathione (GSH) plays an important role in the defence of microorganisms and plants against different environmental stresses. To determine the role of GSH under different stresses, such as acid pH, saline shock, and oxidative shock, a GSH-deficient mutant (Bradyrhizobium sp. 6144-S7Z) was obtained by disruption of the gshA gene, which encodes the enzyme gamma-glutamylcysteine synthetase. Growth of the mutant strain was significantly reduced in liquid minimal saline medium, and the GSH content was very low, about 4% of the wild-type level. The defect, caused by disruption of the gshA gene in the growth of mutant strain, cannot be reversed by the addition of GSH (up to 100 micromol/L) to the liquid minimal saline medium, and the endogenous GSH level was approximately the same as that observed without the addition of GSH. In contrast, the wild-type strain increased the GSH content under these conditions. However, the growth of the mutant strain in a rich medium (yeast extract--mannitol) increased, suggesting that at least some but not all of the functions of GSH could be provided by peptides and (or) amino acids. The symbiotic properties of the mutant were similar to those found in the wild-type strain, indicating that the mutation does not affect the ability of the mutant to form effective nodules.  相似文献   

6.
The objective of this study was to evaluate the survival of cowpea during bacterial colonization and evaluate the interrelationship of the Bradyrhizobium sp. and plant growth-promoting bacteria (PGPB) as a potential method for optimizing symbiotic performance and cowpea development. Two experiments using the model legume cowpea cv. “IPA 206” were conducted. In the first experiment, cowpea seeds were disinfected, germinated and transferred to sterilized Gibson tubes containing a nitrogen-free nutritive solution. The experimental design was randomized blocks with 24 treatments [Bradyrhizobium sp. (BR 3267); 22 PGPB; absolute control (AC)] with three replicates. In the second experiment, seeds were disinfected, inoculated according to their specific treatment and grown in Leonard jars containing washed and autoclaved sand. The experimental design was randomized blocks with 24 treatments [BR 3267; 22 BR 3267 + PGPB; AC] with three replicates. Scanning electron microscopy demonstrated satisfactory colonization of the roots of inoculated plants. Additionally, synergism between BR 3267 and PGPB in cowpeas was observed, particularly in the BR 3267 + Paenibacillus graminis (MC 04.21) and BR 3267 + P. durus (C 04.50), which showed greater symbiotic performance and promotion of cowpea development.  相似文献   

7.
Five A. mangium seedlings of different shoot lengths were selected from a 600-seed screening experiment and micropropagated. Two-week-old rooted microcuttings of the 5 micropropagated clones were inoculated with 3 specific Bradyrhizobium spp. strains in 15 combinations. After 5 months of growth, nodule dry weight and shoot dry weight data showed significant effects of clone and Bradyrhizobium spp. strain. Clones RR-G1 and IR-M2 and Bradyrhizobium sp. Aust13c resulted in the highest dry-matter production and most efficient nodulation. No interaction was observed between clone and Bradyrhizobium spp. strain, which indicates that the Bradyrhizobium spp. strain and the host plant can be selected separately.  相似文献   

8.
Rhizobia are nitrogen-fixing bacteria that establish endosymbiotic associations with legumes. Nodule formation depends on various bacterial carbohydrates, including lipopolysaccharides, K-antigens, and exopolysaccharides (EPS). An acidic EPS from Rhizobium sp. strain NGR234 consists of glucosyl (Glc), galactosyl (Gal), glucuronosyl (GlcA), and 4,6-pyruvylated galactosyl (PvGal) residues with beta-1,3, beta-1,4, beta-1,6, alpha-1,3, and alpha-1,4 glycoside linkages. Here we examined the role of NGR234 genes in the synthesis of EPS. Deletions within the exoF, exoL, exoP, exoQ, and exoY genes suppressed accumulation of EPS in bacterial supernatants, a finding that was confirmed by chemical analyses. The data suggest that the repeating subunits of EPS are assembled by an ExoQ/ExoP/ExoF-dependent mechanism, which is related to the Wzy polymerization system of group 1 capsular polysaccharides in Escherichia coli. Mutation of exoK (NGROmegaexoK), which encodes a putative glycanase, resulted in the absence of low-molecular-weight forms of EPS. Analysis of the extracellular carbohydrates revealed that NGROmegaexoK is unable to accumulate exo-oligosaccharides (EOSs), which are O-acetylated nonasaccharide subunits of EPS having the formula Gal(Glc)5(GlcA)2PvGal. When used as inoculants, both the exo-deficient mutants and NGROmegaexoK were unable to form nitrogen-fixing nodules on some hosts (e.g., Albizia lebbeck and Leucaena leucocephala), but they were able to form nitrogen-fixing nodules on other hosts (e.g., Vigna unguiculata). EOSs of the parent strain were biologically active at very low levels (yield in culture supernatants, approximately 50 microg per liter). Thus, NGR234 produces symbiotically active EOSs by enzymatic degradation of EPS, using the extracellular endo-beta-1,4-glycanase encoded by exoK (glycoside hydrolase family 16). We propose that the derived EOSs (and not EPS) are bacterial components that play a crucial role in nodule formation in various legumes.  相似文献   

9.
10.
11.
C(4)-dicarboxylic acids appear to be metabolized via the tricarboxylic acid (TCA) cycle in N(2)-fixing bacteria (bacteroids) within legume nodules. In Sinorhizobium meliloti bacteroids from alfalfa, NAD(+)-malic enzyme (DME) is required for N(2) fixation, and this activity is thought to be required for the anaplerotic synthesis of pyruvate. In contrast, in the pea symbiont Rhizobium leguminosarum, pyruvate synthesis occurs via either DME or a pathway catalyzed by phosphoenolpyruvate carboxykinase (PCK) and pyruvate kinase (PYK). Here we report that dme mutants of the broad-host-range Sinorhizobium sp. strain NGR234 formed nodules whose level of N(2) fixation varied from 27 to 83% (plant dry weight) of the wild-type level, depending on the host plant inoculated. NGR234 bacteroids had significant PCK activity, and while single pckA and single dme mutants fixed N(2) at reduced rates, a pckA dme double mutant had no N(2)-fixing activity (Fix(-)). Thus, NGR234 bacteroids appear to synthesize pyruvate from TCA cycle intermediates via DME or PCK pathways. These NGR234 data, together with other reports, suggested that the completely Fix(-) phenotype of S. meliloti dme mutants may be specific to the alfalfa-S. meliloti symbiosis. We therefore examined the ME-like genes azc3656 and azc0119 from Azorhizobium caulinodans, as azc3656 mutants were previously shown to form Fix(-) nodules on the tropical legume Sesbania rostrata. We found that purified AZC3656 protein is an NAD(P)(+)-malic enzyme whose activity is inhibited by acetyl-coenzyme A (acetyl-CoA) and stimulated by succinate and fumarate. Thus, whereas DME is required for symbiotic N(2) fixation in A. caulinodans and S. meliloti, in other rhizobia this activity can be bypassed via another pathway(s).  相似文献   

12.
13.
In the present study, attempts were made to analyze the effect of co-inoculation with an efficient phosphate solubilising native isolate Pantoea sp J49 and the symbiotic nitrogen fixing Bradyrhizobium sp SEMIA 6144 strain on Arachis hypogaea L. plants growth. Single and co-inoculation of peanut plants growing in plastic pots containing soil with low P content were developed. Plants were harvested at R1 and R4 growth stages and were analyzed in different growth parameters. Survival of strain Pantoea sp J49 was analyzed in soil samples and in root tissues. Plants inoculated only with Pantoea sp J49 showed the highest shoot and root weight in both reproductive growth stages evaluated. Plants co-inoculated with this strain and Bradyrhizobium sp SEMIA 6144 showed increase in aerial dry weight at R1 stage. Survival assays demonstrated that Pantoea sp J49 survives not only in the peanut rhizosphere but also inside plant tissues, including nodules formed when it was co-inoculated with Bradyrhizobium sp SEMIA 6144. Results obtained in this study confirm the great potential of the native Pantoea sp J49 isolate in the promotion of peanut plant growth, probably related with its capacity to solubilise phosphate.  相似文献   

14.
Bacteria from nodules of the legume Acaciella angustissima native to the south of Mexico were characterized genetically and their nodulation and competitiveness were evaluated. Phylogenetic studies derived from rpoB gene sequences indicated that A. angustissima is nodulated by Sinorhizobium mexicanum, Rhizobium tropici, Mesorhizobium plurifarium and Agrobacterium tumefaciens and by bacteria related to Sinorhizobium americanum, Sinorhizobium terangae, Rhizobium etli and Rhizobium gallicum . A new lineage related to S. terangae is recognized based on the sequences of gyrA, nolR, recA, rpoB and rrs genes, DNA–DNA hybridization and phenotypic characteristics. The name for this new species is Sinorhizobium chiapanecum and its type strain is ITTG S70T. The symbiotic genes nodA and nifH were similar to those from S. mexicanum strains, which are Acaciella symbionts as well, with nodA gene sequences grouped within a cluster of nod genes from strains that nodulate plants from the Mimosoideae subfamily of the Leguminosae. Sinorhizobium isolates were the most frequently obtained from A. angustissima nodules and were among the best strains to promote plant growth in A. angustissima and to compete in interstrain nodule competition assays. Lateral transfer of symbiotic genes is not evident among the genera that nodulate A. angustissima ( Rhizobium, Sinorhizobium and Mesorhizobium ) but may occur among the sympatric and closely related sinorhizobia that nodulate Acaciella .  相似文献   

15.
Pure cultures of the symbiotic cyanobacterium-bryophyte association with Anthoceros punctatus were reconstituted by using Nostoc sp. strain UCD 7801 or its 3-(3,4-dichlorophenol)-1,1-dimethylurea (DCMU)-resistant mutant strain, UCD 218. The cultures were grown under high light intensity with CO2 as the sole carbon source and then incubated in the dark to deplete endogenous reductant pools before measurements of nitrogenase activities (acetylene reduction). High rates of light-dependent acetylene reduction were obtained both before starvation in the dark and after recovery from starvation, regardless of which of the two Nostoc strains was reconstituted in the association. Rates of acetylene reduction by symbiotic tissue with the wild-type Nostoc strain decreased 99 and 96% after 28 h of incubation in the dark and after reexposure to light in the presence of 5 microM DCMU, respectively. Supplementation of the medium with glucose restored nitrogenase activity in the dark to a rate that was 64% of the illuminated rate. In the light and in the presence of 5 microM DCMU, acetylene reduction could be restored to 91% of the uninhibited rate by the exogenous presence of various carbohydrates. The rate of acetylene reduction in the presence of DCMU was 34% of the uninhibited rate of tissue in association with the DCMU-resistant strain UCD 218. This result implies that photosynthates produced immediately by the cyanobacterium can supply at least one-third of the reductant required for nitrogenase activity on a short-term basis in the symbiotic association. However, high steady-state rates of nitrogenase activity by symbiotic Nostoc strains appear to depend on endogenous carbohydrate reserves, which are presumably supplied as photosynthate from both A. punctatus tissue and the Nostoc strain.  相似文献   

16.
Qu Y  Spain JC 《Journal of bacteriology》2011,193(12):3057-3063
Biodegradation pathways of synthetic nitroaromatic compounds and anilines are well documented, but little is known about those of nitroanilines. We previously reported that the initial step in 5-nitroanthranilic acid (5NAA) degradation by Bradyrhizobium sp. strain JS329 is a hydrolytic deamination to form 5-nitrosalicylic acid (5NSA), followed by ring fission catalyzed by 5NSA dioxygenase. The mechanism of release of the nitro group was unknown. In this study, we subcloned, sequenced, and expressed the genes encoding 5NAA deaminase (5NAA aminohydrolase, NaaA), 5NSA dioxygenase (NaaB) and lactonase (NaaC), the key genes responsible for 5NAA degradation. Sequence analysis and enzyme characterization revealed that NaaA is a hydrolytic metalloenzyme with a narrow substrate range. The nitro group is spontaneously eliminated as nitrite concomitant with the formation of a lactone from the ring fission product of 5NSA dioxygenation. The elimination of the nitro group during lactone formation is a previously unreported mechanism for denitration of nitro aliphatic compounds.  相似文献   

17.
Photosynthetic bradyrhizobia are nitrogen-fixing symbionts colonizing the stem and roots of some leguminous plants like Aeschynomene. The effect of oxygen and light on the formation of the photosynthetic apparatus of Bradyrhizobium sp. C7T1 strain is described here. Oxygen is required for growth, but at high concentration inhibits the synthesis of bacteriochlorophyll (BChl) and of the photosynthetic apparatus. However, we show that in vitro, aerobic photosynthetic electron transport occurred leading to ADP photophosphorylation. The expression of the photosynthetic apparatus was regulated by oxygen in a manner which did not agree with earlier results in other photosynthetic bradyrhizobia since BChl accumulation was the highest under microaerobic conditions. This strain produces photosynthetic pigments when grown under cyclic illumination or darkness. However, under continuous white light illumination, a Northern blot analysis of the puf operon showed that, the expression of the photosynthetic genes of the antenna was considerable. Under latter conditions BChl accumulation in the cells was dependent on the oxygen concentration. It was not detectable at high oxygen tensions but became accumulated under low oxygen (microaerobiosis). It is known that in photosynthetic bradyrhizobia bacteriophytochrome photoreceptor (BphP) partially controls the synthesis of the photosystem in response to light. In C7T1 strain far-red light illumination did not stimulate the synthesis of the photosynthetic apparatus suggesting the presence of a non-functional BphP-mediated light regulatory mechanism.  相似文献   

18.
In this study, a total of 50 rhizobial isolates were recovered from the root nodules of greengram plants. Of the 50 isolates, 9 bradyrhizobial strains namely, MRM1, MRM2, MRM3, MRM4, MRM5, MRM6, MRM7, MRM8, and MRM9, exhibiting a higher tolerance levels of 600, 800, 1,200, 1,000, 1,000, 1,600, 1,400, 1,400, and 1,000 μg ml−1, respectively, to triazole fungicide tebuconazole (chromatographically pure) were selected and tested for plant growth-promoting activities. Generally, the rhizobial strain with maximum fungicide-tolerance ability produced higher amounts of plant growth-promoting substances. Among the nine bacterial strains, Bradyrhizobium strain MRM6 was preferably selected due to its ability to tolerate tebuconazole maximally (up to 1,600 μg ml−1) on minimal salt agar medium. In addition, the strain MRM6 grew well in minimal salts medium supplemented with 100 (recommended), 200 (two times of the recommended), and 300 μg tebuconazole l−1 (three times of the recommended rate) and synthesized highest amounts of plant growth-promoting substances like indole acetic acid, siderophores, exopolysaccharides, hydrogen cyanate, and ammonia, both in the absence and presence of 100, 200, and 300 μg l−1 of tebuconazole. Following these properties, the strain MRM6 was used as inoculant and the inoculated greengram plants was raised in soils treated separately with recommended, two and three times the recommended dose of tebuconazole. Generally, tebuconazole at recommended and the higher rates decreased biomass, nodulation, nutrient-uptake, and grain yield of uninoculated greengram plants. Interestingly, Bradyrhizobium sp. (vigna) strain MRM6 when used with any concentration of tebuconazole, significantly increased the measured phyto-chemical-parameters of greengram plants when compared with those grown in soils treated exclusively (without inoculant) with tebuconazole. This study inferred that the strain MRM6 of Bradyrhizobium sp. (vigna) was compatible with tebuconazole and may be co-inoculated with this fungicide for enhancing the production of legumes especially greengram in soils poisoned with fungicides.  相似文献   

19.
The cyanobacterium Nostoc sp. strain UCD 7801, immediately after separation from pure cultures of a reconstituted symbiotic association with the bryophyte Anthoceros punctatus, exhibited a rate of light-dependent CO2 fixation that was eightfold lower than that measured in the free-living growth state. Ribulose bisphosphate carboxylase/oxygenase (RuBPC/O) specific activity was also eightfold lower in cell extracts of symbiotic strain 7801 relative to that in free-living cultures. The in vitro activity from symbiotic strain 7801 could not be increased by incubation under the standard RuBPC/O activation conditions. Polyclonal antibodies against the RuBPC/O large subunit were used in an enzyme-linked immunosorbent assay to determine that RuBPC/O accounted for 4.3 and 5.2% of the total protein in cell extracts of strain 7801 grown in symbiotic and free-living states, respectively. The results imply that the regulation of RuBPC/O activity in the symbiotic growth state is by a posttranslational mechanism rather than by an alteration in RuBPC/O protein synthesis. The amount of carboxyarabinitol bisphosphate required to irreversibly inhibit RuBPC/O activity of sybiotic cell extracts was 80% of that required for extracts of free-living cultures. This result indicates that any covalent modification of RuBPC/O in symbiotically associated Nostoc cells did not interfere with the ribulose bisphosphate binding site, since inactive enzyme also bound carboxyarabinitol bisphosphate.  相似文献   

20.
This report is concerned with the structural characterization and genetic regulation of new bacterial groES and groEL chaperonin genes, and presents two novelties. The first is the discovery that the nitrogen fixing soybean root nodule bacterium, Bradyrhizobium japonicum, unlike all other prokaryotes investigated so far, possesses a multigene family consisting of five very similar, though not identical, groESL-like genes. The second novelty relates to the finding that these five homologues are expressed to different degrees and, in particular, that one family member (namely groESL3) is induced by a mechanism that does not involve the well-known heat shock response. By contrast, the groESL3 genes are co-regulated together with symbiotic nitrogen fixation genes, in that they are activated by the nitrogen fixation regulatory protein NifA at low oxygen conditions and transcribed from a -24/-12 promoter by the sigma 54 RNA polymerase. Two other members of the groESL gene family are apparently expressed constitutively at different levels, and yet another one is strongly induced by high temperature. As an attractive hypothesis it follows that B. japonicum may modulate its cellular contents of GroES- and GroEL-like chaperonins in response to specific environmental conditions and physiological needs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号