共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiaolong Wang Tong Chen Yan Zhang Ning Zhang Chen Li Yaming Li Ying Liu Hanwen Zhang Wenjing Zhao Bing Chen Lijuan Wang Qifeng Yang 《Journal of cellular physiology》2019,234(8):13303-13317
Recently, long noncoding RNAs (lncRNAs) have become the key gene regulators and prognostic biomarkers in various cancers. Through microarray data, Linc00339 was identified as a candidate oncogenic lncRNA. We compared the expression levels of Linc00339 in several breast cancer cell lines and normal mammary gland epithelial cell line. The effects of Linc00339 on tumor progression were examined both in vitro and in vivo. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were applied to evaluate the functions of Linc00339, miR-377-3p, and HOXC6 on cell proliferation. Flow cytometry analysis was used to detect apoptosis and cell cycle distribution. Overall survival (OS) was analyzed using data from The Cancer Genome Atlas and molecular taxonomy of breast cancer international consortium (METABRIC). Dual luciferase assay and RNA immunoprecipitation were performed to confirm the interaction between Linc003339 and miR-377-3p. Linc00339 was increased in breast cancer cell lines compared with the normal epithelial cell. Through in vitro and in vivo experiments, Linc00339 overexpression promoted triple-negative breast cancer (TNBC) proliferation, inhibited cell cycle arrest, and suppressed apoptosis. Silencing of Linc00339 obtained the opposite effects. Mechanistic investigations demonstrated that Linc00339 could sponge miR-377-3p and regulate its expression. Higher expression of miR-377-3p indicated longer OS in breast cancer patients, especially in TNBC patients. Overexpression of miR-377-3p retarded TNBC cell growth through regulating cell cycle distribution and apoptosis. And miR-377-3p was involved in Linc00339-mediated TNBC proliferation through regulating HOXC6 expression. Knockdown of HOXC6 inhibited TNBC progression. In conclusion, our results illuminated that the novel Linc00339/miR-377-3p/HOXC6 axis played a critical role in TNBC progression and might be a promising therapeutic target for TNBC treatment. 相似文献
2.
3.
4.
5.
6.
7.
8.
Yu Yang Fangyi Zhang Hang Huang Zhiyue Xie Weiping Huang Hui Xie Feng Wang 《Journal of cellular physiology》2020,235(4):3768-3775
Growing reports indicate that long noncoding RNA (lncRNA) are involved in the regulation of various biological processes of cancer cells. LINC00319 is an ill investigated lncRNA and has been shown to regulate lung cancer, nasopharyngeal carcinoma and ovarian cancer. Nevertheless, its roles in bladder cancer (BCa) remain unclear. In our research, LINC00319 was shown to be an upregulated lncRNA in BCa tissues. LINC00319 expression is negatively correlated with the patient's prognosis. Silencing of LINC00319 suppressed BCa proliferation and invasiveness. In addition, the data indicated LINC00319 was a sponge for miR-4492 and miR-4492 suppressed ROMO1 expression in BCa. Furthermore, our results illustrated miR-4492/ROMO1 axis regulates proliferation, migration, and invasion and LINC00319 exerts oncogenic roles through modulating miR-4492/ROMO1 axis. In sum, this study suggested that LINC00319 acts as oncogenic roles in BCa progression. 相似文献
9.
10.
Long noncoding RNAs (lncRNAs) have been showed to play a crucial role in pathogenesis and development of cardiovascular diseases. Our study aimed to study the expression and functional role of lncRNA LINC00968 in the development of coronary artery disease (CAD). We showed that the LINC00968 expression level was upregulated in the CAD tissues compared with normal arterial tissues. In addition, we showed that the expression level of LINC00968 was upregulated by oxidized low-density lipoprotein (oxLDL) treatment in endothelial cell. Ectopic expression of LINC00968 regulated the proliferation and migration of endothelial cell. Moreover, we showed that overexpression of LINC00968 inhibited miR-9-3p expression in an endothelial cell. Furthermore, we demonstrated that the miR-9-3p expression was downregulated in the CAD samples compared with normal arterial tissues and the expression level of miR-9-3p was downregulated by oxLDL treatment in endothelial cell. Finally, we showed that ectopic expression of LINC00968 promoted endothelial cell proliferation and migration partly through regulating miR-9-3p expression. These results suggested that LINC00968 plays a crucial role in the progression of the CAD. 相似文献
11.
Xingcheng Xiong Qiao Shi Xiaojia Yang Weixing Wang Jing Tao 《Journal of cellular physiology》2019,234(9):15619-15626
Pancreatic cancer is a serious solid malignant tumor worldwide. Increasing evidence has pointed out that abnormal expressions of long noncoding RNAs are involved in various tumors. Meanwhile, LINC00052 is reported as a famous tumor regulator in several cancers. Nevertheless, the biological role of LINC00052 in pancreatic cancer progression is still unknown. Our study was to explore the specific mechanism of LINC00052 in pancreatic cancer. First, we observed that the LINC00052 was obviously downregulated in several pancreatic cancer cell lines. Overexpression of LINC00052 greatly repressed AsPC-1 and SW1990 cell proliferation, triggered the apoptosis and prevented cell cycle in the G1 phase. For another, AsPC-1 and SW1990 cell migration and invasion capacity were also obviously repressed by LINC00052 upregulation. Moreover, miR-330-3p was elevated in pancreatic cancer cells and can function as a target of LINC00052 confirmed by luciferase reporter and RNA Immunoprecipitation (RIP) experiments. Inhibition of miR-330-3p could depress pancreatic cancer progression while overexpressed miR-330-3p exhibited an opposite process. Finally, our data indicated that the LINC00052 also remarkably suppressed pancreatic tumor growth via modulating miR-330-3p in vivo. To conclude, our study revealed that the LINC00052 might provide a new perspective for pancreatic cancer therapy. 相似文献
12.
Laryngeal squamous cell carcinoma (LSCC) is a very common neoplasm of the head and neck in the world. Long noncoding RNAs play key roles in cell infiltration, fate, apoptosis, and invasion. However, the functional role and expression of LINC00339 remains unclear in LSCC. In this study, we showed that the expression level of LINC00339 was upregulated in LSCC tissues and cell lines. LINC00339 silencing suppressed the proliferation, invasion, and epithelial-mesenchymal transition (EMT) progression of LSCC cells. In addition, we showed that LINC00339 acted as a sponge of miR-145, and LINC00339 silencing promoted the expression of miR-145 in Hep2 cell. Furthermore, the expression of miR-145 was lower in LSCC tissues than in their paired normal samples and the miR-145 expression level was negatively correlated with LINC00339 expression in LSCC tissues. The knockdown of miR-145 promoted the proliferation, invasion, and EMT progression of LSCC cells. Finally, we indicated that LINC00339 silencing inhibited the proliferation, invasion, and EMT progression of LSCC cells by suppressing the miR-145 expression. These data suggested that LINC00339 acted as an oncogene in the development of LSCC, partly by regulating the miR-145 expression. 相似文献
13.
14.
CircRNA circPDSS1 promotes the gastric cancer progression by sponging miR-186-5p and modulating NEK2
Yiming Ouyang Yuejin Li Yingguang Huang Xing Li Yu Zhu Yaxin Long Yongzhi Wang Xiaodong Guo Kunmei Gong 《Journal of cellular physiology》2019,234(7):10458-10469
The aim of this study is to investigate the regulatory mechanism of circPDSS1/miR-186-5p/NEK2 axis on the viability and proliferation in gastric cancer (GC) cell line. Differentially expressed circRNAs, miRNAs, and mRNAs in GC tissues and paracarcinoma tissues were analyzed using gene chips GSE83521, GSE89143, and GSE93415. Then, the expression of circPDSS1, miR-186-5p, and NEK2 was analyzed via quantitative real-time polymerase chain reaction (qRT-PCR). Survival analysis was adopted to explore the association between the circPDSS1 expression and the prognosis of GC. The effect of circPDSS1 on GC cell cycle and apoptosis was verified with the flow cytometry. Targeting relationships among circPDSS1, miR-186-5p, and NEK2 were predicted via bioinformatics analysis and demonstrated by the dual-luciferase reporter assay. Our results showed that circPDSS1 and NEK2 were high-expressed whereas miR-186-5p was low-expressed in GC tissues and cells. CircPDSS1 promoted GC cell cycle and inhibited apoptosis by sponging miR-186-5p, while miR-186-5p inhibited cell cycle and promoted apoptosis by targeting NEK2. Thus, circPDSS1 acts as a tumor promoter by regulating miR-186-5p and NEK2, which could be a potential biomarker and therapeutic target for the management of GC. 相似文献
15.
16.
Chu Zhang Jie Liu Yang Zhang Chengyan Luo Tong Zhu Rongrong Zhang Ruiqin Yao 《Journal of cellular physiology》2020,235(4):3939-3949
Ovarian cancer (OC) is a highly prevalent gynecologic malignancy and its mortality is extremely high. Therefore, the development of novel therapeutic approaches for OC is of great significance. In this study, LINC01342 was upregulated in OC tissue in the GSE38666 microarray and in tumor tissue samples collected in our center. The silencing of LINC01342 suppressed the proliferative and metastatic capacities of A2780 and HO8910 cells. Subcellular distribution assays showed that LINC01342 was mainly enriched in the cytoplasm. Subsequently, the downregulation of microRNA-30c-2-3p was proven to be the target of LINC01342. The silencing of microRNA-30c-2-3p enhanced the clonality and migratory capacity of OC cells. Moreover, the silencing of microRNA-30c-2-3p could reverse the inhibited migration and clonality in OC cells caused by LINC01342 knockdown. In addition, hypoxia-inducible factor 3 subunit α (HIF3A) was proven to be the target gene of microRNA-30c-2-3p, which was upregulated. HIF3A was negatively regulated by microRNA-30c-2-3p but positively regulated by LINC01342 in OC cells. An RNA binding protein immunoprecipitation assay showed that microRNA-30c-2-3p, LINC01342, and HIF3A could bind to argonaute RISC catalytic component 2. The overexpression of HIF3A reversed the inhibited migration and clonality in OC cells with LINC01342 knockdown. By analyzing the follow-up data from the enrolled OC patients, the LINC01342 and HIF3A levels were negatively correlated with prognosis, while the microRNA-30c-2-3p level was positively correlated with the same. In short, the upregulated LINC01342 in OC absorbs microRNA-30c-2-3p to release HIF3A. Thus, upregulated HIF3A expression accelerates the progression of OC. 相似文献
17.
18.
19.
LINC00963 targeting miR-128-3p promotes acute kidney injury process by activating JAK2/STAT1 pathway
Li-Bo Xie Bo Chen Xue Liao Yi-Feng Chen Rui Yang Si-Rong He Li-Jun Pei Rui Jiang 《Journal of cellular and molecular medicine》2020,24(10):5555-5564
The role of long non-coding RNAs (lncRNAs) in kidney diseases has been gradually discovered in recent years. LINC00963, as an lncRNA, was found to be involved in chronic renal failure. However, the role and molecular mechanisms of LINC00963 engaged in acute kidney injury (AKI) were still unclear. In this study, we established rat AKI models by ischaemia and reperfusion (I/R) treatment. Urea and creatinine levels were determined, and histological features of kidney tissues were examined following HE staining. CCK8 assay was chosen to assess the viability of hypoxia-induced HK-2 cells. Dual-luciferase reporter gene assays were performed to verify the target relationship between LINC00963 and microRNA. The mRNA and protein levels were assayed by RT-qPCR and Western blot, respectively. Annexin V-FITC/PI and TUNEL staining were used to evaluate apoptosis. LINC00963 was highly expressed in the cell and rat models, and miR-128-3p was predicted and then verified as a target gene of LINC00963. Knockdown of LINC00963 reduced acute renal injury both in vitro and in vivo. LINC00963 activated the JAK2/STAT1 pathway to aggravate renal I/R injury. LINC00963 could target miR-128-3p to reduce G1 arrest and apoptosis through JAK2/STAT1 pathway to promote the progression of AKI. 相似文献
20.
Pei Ma Haitao Wang Jiangyang Sun Hongzhou Liu Chao Zheng Xin Zhou 《Cell cycle (Georgetown, Tex.)》2018,17(8):974-984
Long intergenic non-coding RNA 00152 (LINC00152) is aberrantly expressed in various human malignancies and plays an important role in the pathogenesis. Here, we found that LINC00152 is upregulated in hepatocellular carcinoma (HCC) tissues as compared to adjacent non-neoplastic tissues; gain-and-loss-of-function analyses in vitro showed that LINC00152 facilitates HCC cell cycle progression through regulating the expression of CCND1. LINC00152 knockdown inhibits tumorigenesis in vivo. MS2-RIP analysis indicated that LINC00152 binds directly to miR-193a/b-3p, as confirmed by luciferase reporter assays. Furthermore, ectopic expression of LINC00152 partially halted the decrease in CCND1 expression and cell proliferation capacity induced by miR-193a/b-3p overexpression. Thus, LINC00152 acts as a competing endogenous RNA (ceRNA) by sponging miR-193a/b-3p to modulate its target gene, CCND1. Our findings establish a ceRNA mechanism regulating cell proliferation in HCC via the LINC00152/miR-193a/b-3p/CCND1 signalling axis, and identify LINC00152 as a potential therapeutic target for HCC. 相似文献