首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Intracellular trehalose accumulation is relevant to fungal life and pathogenicity. Trehalose-6-phosphate synthase (TPS) is known to control the first step of trehalose synthesis, but functions of multiple TPS genes in some filamentous fungi are variable. Here, we examined the functions of two TPS genes (tpsA and tpsB) in Beauveria bassiana, a fungal insect pathogen widely applied in arthropod pest control. Intracellular TPS activity and trehalose content decreased by 71–75 and 72–80% in ΔtpsA, and 21–30 and 15–45% in ΔtpsB, respectively, and to undetectable levels in ΔtpsAΔtpsB, under normal and stressful conditions. The three mutants lost 33, 50, and 98% of conidiation capacity in standard cultures. Conidial quality indicated by viability, density, intracellular trehalose content, cell wall integrity, and hydrophobicity was more impaired in ΔtpsA than in ΔtpsB and mostly in ΔtpsAΔtpsB, which was also most sensitive to nutritional, chemical, and environmental stresses and least virulent to Galleria mellonella larvae. Almost all of phenotypic defects in ΔtpsAΔtpsB approached to the sums of those observed in ΔtpsA and ΔtpsB and were restored by targeted gene complementation. Altogether, TpsA and TpsB play complementary roles in sustaining trehalose synthesis, conidiation capacity, conidial quality, multiple stress tolerance, and virulence, highlighting a significance of both for the fungal adaptation to environment and host.

  相似文献   

3.
4.
Histone acetyltransferases and deacetylases maintain dynamics of lysine acetylation/deacetylation on histones and nonhistone substrates involved in gene regulation and cellular events. Hos2 is a Class I histone deacetylases that deacetylates unique histone H4‐K16 site in yeasts. Here, we report that orthologous Hos2 deacetylates H4‐K16 and is also involved in the acetylation of histone H3‐K56 and the phosphorylation of histone H2A‐S129 and cyclin‐dependent kinase 1 CDK1‐Y15 in Beauveria bassiana, a filamentous fungal insect pathogen. These site‐specific modifications are evidenced with hyperacetylated H4‐K16, hypoacetylated H3‐K56, and both hypophosphorylated H2A‐S129 and CDK1‐Y15 in absence of hos2. Consequently, the Δhos2 mutant suffered increased sensitivities to DNA‐damaging and oxidative stresses, disturbed cell cycle, impeded cytokinesis, increased cell size or length, reduced conidiation capacity, altered conidial properties, and attenuated virulence. These phenotypic changes correlated well with dramatic repression of many genes that are essential for DNA damage repair, G1/S transition and DNA synthesis, hyphal septation, and asexual development. The uncovered ability for Hos2 to directly deacetylate H4‐K16 and to indirectly modify H3‐K56, H2A‐S129, and CDK1‐Y15 provides novel insight into more subtle regulatory role for Hos2 in genomic stability and diverse cellular events in the fungal insect pathogen than those revealed previously in nonentomophathogenic fungi.  相似文献   

5.
The entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana are highly virulent control tools for insect pests and have been under evaluation for the control of globally important mosquito vectors such as Aedes aegypti. Here, we identified and isolated other virulent entomopathogenic fungi against Ae. aegypti. We collected 7 species of mosquitoes by human landing catch in 5 municipalities in Central and Northern Mexico and isolated 28 species of fungi. We harvested fungal conidia from six and assessed virulence against Ae. aegypti females. We observed variation in virulence of fungi in Ae. aegypti with the most virulent being Aspergillus tamarii, with a LT50 of 6.4 (±0.65) days and the least virulent was Trichoderma euskadiense with a LT50 of 16.3 (±1.5) days. Additional assays evaluated the impact of the fungi on Ae. aegypti fecundity and fertility and A. tamarii had the highest for both, resulting in 60% and 37% decrease, respectively. These results provide support for the potential utility of A. tamarii as an entomopathogenic control tool for the dengue vector, Ae. aegypti, pending further evaluations of environmental and nontarget safety.  相似文献   

6.
7.
8.
Entomopathogenic fungi, such as Beauveria bassiana, are key environmental pathogens of insects that have been exploited for biological control of insect pests. Mitogen-activated protein (MAP) kinases play crucial roles in regulating fungal development, growth, and pathogenicity, mediating responses to the environment. Bbslt2, encoding for an Slt2 family MAPK, was isolated and characterized from B. bassiana. Gene disruption of Bbslt2 affected growth, caused a significant reduction in conidial production and viability, and increased sensitivity to Congo Red and fungal cell wall degrading enzymes. ΔBbslt2 mutants were altered in cell wall structure and composition, which included temperature dependent chitin accumulation, reductions in conidial and hyphal hydrophobicity, and alterations in cell surface carbohydrate epitopes. The ΔBbslt2 strain also showed hypersensitivity to heat shock and altered trehalose accumulation, which could only be partially attributed to changes in the expression of trehalase (ntl1). Insect bioassays revealed decreased virulence in the ΔBbslt2 strain using both topical and intrahemoceol injection assays. These results indicate that Bbslt2 plays an important role in conidiation, viability, cell wall integrity and virulence in B. bassiana. Our findings are discussed within the context of the two previous MAP kinases characterized from B. bassiana.  相似文献   

9.
《Autophagy》2013,9(4):538-549
Autophagy is a highly conserved process that maintains intracellular homeostasis by degrading proteins or organelles in all eukaryotes. The effect of autophagy on fungal biology and infection of insect pathogens is unknown. Here, we report the function of MrATG8, an ortholog of yeast ATG8, in the entomopathogenic fungus Metarhizium robertsii. MrATG8 can complement an ATG8-defective yeast strain and deletion of MrATG8 impaired autophagy, conidiation and fungal infection biology in M. robertsii. Compared with the wild-type and gene-rescued mutant, Mratg8Δ is not inductive to form the infection-structure appressorium and is impaired in defense response against insect immunity. In addition, accumulation of lipid droplets (LDs) is significantly reduced in the conidia of Mratg8Δ and the pathogenicity of the mutant is drastically impaired. We also found that the cellular level of a LD-specific perilipin-like protein is significantly lowered by deletion of MrATG8 and that the carboxyl terminus beyond the predicted protease cleavage site is dispensable for MrAtg8 function. To corroborate the role of autophagy in fungal physiology, the homologous genes of yeast ATG1, ATG4 and ATG15, designated as MrATG1, MrATG4 and MrATG15, were also deleted in M. robertsii. In contrast to Mratg8Δ, these mutants could form appressoria, however, the LD accumulation and virulence were also considerably impaired in the mutant strains. Our data showed that autophagy is required in M. robertsii for fungal differentiation, lipid biogenesis and insect infection. The results advance our understanding of autophagic process in fungi and provide evidence to connect autophagy with lipid metabolism.  相似文献   

10.
11.
12.
Entomopathogenic fungi penetrate the insect cuticle using their abundant hydrolases. These hydrolases, which include cuticle-degrading proteases and chitinases, are important virulence factors. Our recent findings suggest that many serine protease inhibitors, especially TIL-type protease inhibitors, are involved in insect resistance to pathogenic microorganisms. To clarify the molecular mechanism underlying this resistance to entomopathogenic fungi and identify novel genes to improve the silkworm antifungal capacity, we conducted an in-depth study of serine protease inhibitors. Here, we cloned and expressed a novel silkworm TIL-type protease inhibitor, BmSPI39. In activity assays, BmSPI39 potently inhibited the virulence protease CDEP-1 of Beauveria bassiana, suggesting that it might suppress the fungal penetration of the silkworm integument by inhibiting the cuticle-degrading proteases secreted by the fungus. Phenol oxidase activation studies showed that melanization is involved in the insect immune response to fungal invasion, and that fungus-induced excessive melanization is suppressed by BmSPI39 by inhibiting the fungal cuticle-degrading proteases. To better understand the mechanism involved in the inhibition of fungal virulence by protease inhibitors, their effects on the germination of B. bassiana conidia was examined. BmSPI38 and BmSPI39 significantly inhibited the germination of B. bassiana conidia. Survival assays showed that BmSPI38 and BmSPI39 markedly improved the survival rates of silkworms, and can therefore be used as targeted resistance proteins in the silkworm. These results provided new insight into the molecular mechanisms whereby insect protease inhibitors confer resistance against entomopathogenic fungi, suggesting their potential application in medicinal or agricultural fields.  相似文献   

13.
Plant fungal pathogens secrete numerous proteins into the apoplast at the plant–fungus contact sites to facilitate colonization. However, only a few secretory proteins were functionally characterized in Magnaporthe oryzae, the fungal pathogen causing rice blast disease worldwide. Asparagine-linked glycosylation 3 (Alg3) is an α-1,3-mannosyltransferase functioning in the N-glycan synthesis of N-glycosylated secretory proteins. Fungal pathogenicity and cell wall integrity are impaired in Δalg3 mutants, but the secreted proteins affected in Δalg3 mutants are largely unknown. In this study, we compared the secretomes of the wild-type strain and the Δalg3 mutant and identified 51 proteins that require Alg3 for proper secretion. These proteins were predicted to be involved in metabolic processes, interspecies interactions, cell wall organization, and response to chemicals. Nine proteins were selected for further validation. We found that these proteins were localized at the apoplastic region surrounding the fungal infection hyphae. Moreover, the N-glycosylation of these proteins was significantly changed in the Δalg3 mutant, leading to the decreased protein secretion and abnormal protein localization. Furthermore, we tested the biological functions of two genes, INV1 (encoding invertase 1, a secreted invertase) and AMCase (encoding acid mammalian chinitase, a secreted chitinase). The fungal virulence was significantly reduced, and the cell wall integrity was altered in the Δinv1 and Δamcase mutant strains. Moreover, the N-glycosylation was essential for the function and secretion of AMCase. Taken together, our study provides new insight into the role of N-glycosylated secretory proteins in fungal virulence and cell wall integrity.  相似文献   

14.
Laccases are widely present in bacteria, fungi, plants and invertebrates and involved in a variety of physiological functions. Here, we report that Beauveria bassiana, an economic important entomopathogenic fungus, secretes a laccase 2 (BbLac2) during infection that detoxifies insect immune response-generated reactive oxygen species (ROS) and interferes with host immune phenoloxidase (PO) activation. BbLac2 is expressed in fungal cells during proliferation in the insect haemocoel and can be found to distribute on the surface of haemolymph-derived in vivo fungal hyphal bodies or be secreted. Targeted gene-knockout of BbLac2 increased fungal sensitivity to oxidative stress, decreased virulence to insect, and increased host PO activity. Strains overexpressing BbLac2 showed increased virulence, with reduced host PO activity and lowered ROS levels in infected insects. In vitro assays revealed that BbLac2 could eliminate ROS and oxidize PO substrates (phenols), verifying the enzymatic functioning of the protein in detoxification of cytotoxic ROS and interference with the PO cascade. Moreover, BbLac2 acted as a cell surface protein that masked pathogen associated molecular patterns (PAMPs), enabling the pathogen to evade immune recognition. Our data suggest a multifunctional role for fungal pathogen-secreted laccase 2 in evasion of insect immune defenses.  相似文献   

15.
Calcineurin is highly conserved and regulates growth, conidiation, stress response, and pathogenicity in fungi. However, the functions of calcineurin and its regulatory network in entomopathogenic fungi are not clear. In this study, calcineurin was functionally analyzed by deleting the catalytic subunit MaCnA from the entomopathogenic fungus Metarhizium acridum. The ΔMaCnA mutant had aberrant, compact colonies and blunt, shortened hyphae. Conidia production was reduced, and phialide differentiation into conidiogenous cells was impaired in the ΔMaCnA mutant. ΔMaCnA had thinner cell walls and greatly reduced chitin and β-1,3-glucan content compared to the wild type. The ΔMaCnA mutant was more tolerant to cell wall-perturbing agents and elevated or decreased exogenous calcium but less tolerant to heat, ultraviolet irradiation, and caspofungin than the wild type. Bioassays showed that ΔMaCnA had decreased virulence. Digital gene expression profiling revealed that genes involved in cell wall construction, conidiation, stress tolerance, cell cycle control, and calcium transport were downregulated in ΔMaCnA. Calcineurin affected some components of small G proteins, mitogen-activated protein kinase, and cyclic AMP (cAMP)-protein kinase A signaling pathways in M. acridum. In conclusion, our results gave a global survey of the genes downstream of calcineurin in M. acridum, providing molecular explanations for the changes in phenotypes observed when calcineurin was deleted.  相似文献   

16.
The entomopathogenic fungus Beauveria bassiana is able to grow on insect cuticle hydrocarbons, inducing alkane assimilation pathways and concomitantly increasing virulence against insect hosts. In this study, we describe some physiological and molecular processes implicated in growth, nutritional stress response, and cellular alterations found in alkane-grown fungi. The fungal cytology was investigated using light and transmission electron microscopy while the surface topography was examined using atomic force microscopy. Additionally, the expression pattern of several genes associated with oxidative stress, peroxisome biogenesis, and hydrophobicity were analysed by qPCR. We found a novel type of growth in alkane-cultured B. bassiana similar to mycelial pellets described in other alkane-free fungi, which were able to produce viable conidia and to be pathogenic against larvae of the beetles Tenebrio molitor and Tribolium castaneum. Mycelial pellets were formed by hyphae cumulates with high peroxidase activity, exhibiting peroxisome proliferation and an apparent surface thickening. Alkane-grown conidia appeared to be more hydrophobic and cell surfaces displayed different topography than glucose-grown cells. We also found a significant induction in several genes encoding for peroxins, catalases, superoxide dismutases, and hydrophobins. These results show that both morphological and metabolic changes are triggered in mycelial pellets derived from alkane-grown B. bassiana.  相似文献   

17.
18.
The ergosterol biosynthesis pathway is well understood in Saccharomyces cerevisiae, but currently little is known about the pathway in plant‐pathogenic fungi. In this study, we characterized the Fusarium graminearum FgERG4 gene encoding sterol C‐24 reductase, which catalyses the conversion of ergosta‐5,7,22,24‐tetraenol to ergosterol in the final step of ergosterol biosynthesis. The FgERG4 deletion mutant ΔFgErg4‐2 failed to synthesize ergosterol. The mutant exhibited a significant decrease in mycelial growth and conidiation, and produced abnormal conidia. In addition, the mutant showed increased sensitivity to metal cations and to various cell stresses. Surprisingly, mycelia of ΔFgErg4‐2 revealed increased resistance to cell wall‐degrading enzymes. Fungicide sensitivity tests revealed that ΔFgErg4‐2 showed increased resistance to various sterol biosynthesis inhibitors (SBIs), which is consistent with the over‐expression of SBI target genes in the mutant. ΔFgErg4‐2 was impaired dramatically in virulence, although it was able to successfully colonize flowering wheat head and tomato, which is in agreement with the observation that the mutant produces a significantly lower level of trichothecene mycotoxins than does the wild‐type progenitor. All of these phenotypic defects of ΔFgErg4‐2 were complemented by the reintroduction of a full‐length FgERG4 gene. In addition, FgERG4 partially rescued the defect of ergosterol biosynthesis in the Saccharomyces cerevisiae ERG4 deletion mutant. Taken together, the results of this study indicate that FgERG4 plays a crucial role in ergosterol biosynthesis, vegetative differentiation and virulence in the filamentous fungus F. graminearum.  相似文献   

19.
One of the hurdles in the development of entomopathogenic fungi such as Beauveria bassiana is loss of virulence when successively maintained in vitro. This may result in products of inferior quality in mass production programs. Also, there are many contradicting data and unclear points in this case. Three isolates of B. bassiana were subcultured successively 15 times. Spore-bound Pr1 activity, germination rate, and virulence of conidia against mealworm (Tenebrio molitor L.) larvae were studied. Results showed that isolates normally retained their virulence during 10 subculturings. However, they clearly offered decreased virulence (elevated LT50 values and lower percent mortality). The activity of Pr1 bound to conidia declined as subculturing continued; the lowest spore-bound activity and germination potential of conidia was recorded for the 15th subculture. Virulence data were in agreement with Pr1 activity and germination rate as there was a positive correlation between germination rate and spore-bound Pr1 activity with fungal virulence. This explains that at least a part of attenuation in fungal virulence can be explored in enzymatic activity, especially in the important cuticle-degrading protease, Pr1.  相似文献   

20.
Cycle inhibiting factors (Cif) constitute a broad family of cyclomodulins present in bacterial pathogens of invertebrates and mammals. Cif proteins are thought to be type III effectors capable of arresting the cell cycle at G2/M phase transition in human cell lines. We report here the first direct functional analysis of CifPl, from the entomopathogenic bacterium Photorhabdus luminescens, in its insect host. The cifPl gene was expressed in P. luminescens cultures in vitro. The resulting protein was released into the culture medium, unlike the well characterized type III effector LopT. During locust infection, cifPl was expressed in both the hemolymph and the hematopoietic organ, but was not essential for P. luminescens virulence. CifPl inhibited proliferation of the insect cell line Sf9, by blocking the cell cycle at the G2/M phase transition. It also triggered host cell death by apoptosis. The integrity of the CifPl catalytic triad is essential for the cell cycle arrest and pro-apoptotic activities of this protein. These results highlight, for the first time, the dual role of Cif in the control of host cell proliferation and apoptotic death in a non-mammalian cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号