首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The populations of the bivalve clam Macoma balthica in the low-salinity Northern Baltic Sea represent an admixture of two strongly diverged genomic origins, the Pacific Macoma balthica balthica (approx. 60% genomic contribution) and Atlantic Macoma balthica rubra (40%). Using allozyme and mtDNA characters, we describe the broad transition from this hybrid swarm to the pure M. b. rubra in the saline North Sea waters, spanning hundreds of kilometre distance. The zone is centred in the strong salinity gradient of the narrow Öresund strait and in the adjacent Western Baltic. Yet the multilocus clines show no simple and smoothly monotonic gradation: they involve local reversals and strong differences between neighbouring populations. The transitions in different characters are not strictly coincident, and the extent of introgression varies among loci. The Atlantic influence extends further into the Baltic in samples from the southern and eastern Baltic coasts than on the western coast, and further in deeper bottoms than at shallow (< 1 m) sites. This fits with the counterclockwise net circulation pattern and with a presumably weaker salinity barrier for invading Atlantic type larvae in saline deeper water, and corresponding facilitation of outwards drift of Baltic larvae in diluted surface waters. Genotypic disequilibria were strong particularly in the shallow-water samples of the steepest transition zone. This suggests larval mixing from different sources and limited interbreeding in that area, which makes a stark contrast to the evidence of thorough amalgamation of the distinct genomic origins in the inner Baltic hybrid swarm of equilibrium structure.  相似文献   

2.
The post-glacial Baltic Sea has experienced extreme changes that are archived today in the deep sediments. IODP Expedition 347 retrieved cores down to 100 m depth and studied the climate history and the deep biosphere. We here review the biogeochemical and microbiological highlights and integrate these with other studies from the Baltic seabed. Cell numbers, endospore abundance and organic matter mineralization rates are extremely high. A 100-fold drop in cell numbers with depth results from a small difference between growth and mortality in the ageing sediment. Evidence for growth derives from a D:L amino acid racemization model, while evidence for mortality derives from the abundance and potential activity of lytic viruses. The deep communities assemble at the bottom of the bioturbated zone from the founding surface community by selection of organisms suited for life under deep sediment conditions. The mean catabolic per-cell rate of microorganisms drops steeply with depth to a life in slow-motion, typical for the deep biosphere. The subsurface life under extreme energy limitation is facilitated by exploitation of recalcitrant substrates, by biochemical protection of nucleic acids and proteins and by repair mechanisms for random mismatches in DNA or damaged amino acids in proteins.  相似文献   

3.
Populations of the common mussel ( Mytilus edulis ) from the North Sea area (Skakerrak-Kattegat) and those from the Baltic Sea are almost diagnostically differentiated at five out of 22 studied allozyme loci; at a further seven loci, alleles predominant or common in one area are nearly absent in the other. Genetic distance was estimated at 0.28; this is similar to the distances of these populations to the Mediterranean mussel M. galloprovincialis. The three mussel types obviously represent equal evolutionary divergence from one another, and should also be taxonomically equally separated; a semispecies rank within a more comprehensive M. edulis complex or superspecies is suggested. The age of the Baltic mussel type ( 'M. trossulus' ), as an independent evolutionary lineage, is probably far greater than that of the post-glacial Baltic Sea.
Allele frequencies change gradually and in parallel when entering from the Kattegat through the Sound into the Baltic. Only a slight Wahlund effect at the strongly diverged Gpi and Pgm loci was found in intermediate populations, indicating that extensive hybridization of the two taxa takes place in the area. However, strong interlocus genotypic associations suggest that selection against hybrids is intense in later generations; the c. 100 km wide hybrid zone is narrow relative to the dispersal distance. The genotypic structure of the Lap locus does not conform with those of the other loci studied in the hybrid zone; it cannot be viewed merely as a neutral marker of the process of hybridization.  相似文献   

4.
The Baltic Sea is known for its ecological problems due to eutrophication caused by high nutrient input via nitrogen fixation and rivers, which deliver up to 70% of nitrogen in the form of dissolved organic nitrogen (DON) compounds. We therefore measured organic nitrogen uptake rates using self produced 15N labeled allochthonous (derived from Brassica napus and Phragmites sp.) and autochthonous (derived from Skeletonema costatum) DON at twelve stations along a salinity gradient (34 to 2) from the North Sea to the Baltic Sea in August/September 2009. Both labeled DON sources were exploited by the size fractions 0.2–1.6 μm (bacteria size fraction) and >1.6 μm (phytoplankton size fraction). Higher DON uptake rates were measured in the Baltic Sea compared to the North Sea, with rates of up to 1213 nmol N l?1 h?1. The autochthonous DON was the dominant nitrogen form used by the phytoplankton size fraction, whereas the heterotrophic bacteria size fraction preferred the allochthonous DON. We detected a moderate shift from >1.6 μm plankton dominated DON uptake in the North Sea and central Baltic Sea towards a 0.2–1.6 μm dominated DON uptake in the Bothnian Bay and a weak positive relationship between DON concentrations and uptake. These findings indicate that DON is an important component of plankton nutrition and can fuel primary production. It may therefore also contribute substantially to eutrophication in the Baltic Sea especially when inorganic nitrogen sources are depleted.  相似文献   

5.
6.
The North Sea–Baltic Sea transition zone constitutes a boundary area for the kelp species Saccharina latissima due to a strong salinity gradient operating in the area. Furthermore, the existence of S. latissima there, along Danish waters, is fairly patchy as hard bottom is scarce. In this study, patterns of genetic diversity of S. latissima populations were evaluated along the salinity gradient area of Danish waters (here designated brackish) and were compared to reference sites (here designated marine) outside the gradient area, using microsatellite markers. The results showed that the S. latissima populations were structured into two clusters corresponding to brackish versus marine sites, and that gene flow was reduced both between clusters and between populations within clusters. In addition, results provided empirical evidence that marginal populations of S. latissima in the salinity gradient area exhibited a distinct genetic structure when compared to marine ones. Brackish populations were less diverse, more related, and showed increased differentiation over distance compared to marine populations. The isolation of the brackish S. latissima populations within the salinity gradient area of Danish waters in conjunction with their general low genetic diversity makes these populations vulnerable to ongoing environmental and climate change, predicted to result in declining salinity in the Baltic Sea area that may alter the future distribution and performance of S. latissima in the area.  相似文献   

7.
Eukaryotes have long been thought to have arisen by evolving a nucleus, endomembrane, and cytoskeleton. In contrast, it was recently proposed that the first complex cells, which were actually proto-eukaryotes, arose simultaneously with the acquisition of mitochondria. This so-called symbiotic association hypothesis states that eukaryotes emerged when some ancient anaerobic archaebacteria (hosts) engulfed respiring alpha-proteobacteria (symbionts), which evolved into the first energy-producing organelles. Therefore, the intracellular compartmentalization of the energy-converting metabolism that was bound originally to the plasma membrane appears to be the key innovation towards eukaryotic genome and cellular organization. The novel energy metabolism made it possible for the nucleotide synthetic apparatus of cells to be no longer limited by subsaturation with substrates and catalytic components. As a consequence, a considerable increase has occurred in the size and complexity of eukaryotic genomes, providing the genetic basis for most of the further evolutionary changes in cellular complexity. On the other hand, the active uptake of exogenous DNA, which is general in bacteria, was no longer essential in the genome organization of eukaryotes. The mitochondrion-driven scenario for the first eukaryotes explains the chimera-like composition of eukaryotic genomes as well as the metabolic and cellular organization of eukaryotes.  相似文献   

8.
Genetic population structure of turbot (Scophthalmus maximus L.) in the Northeast Atlantic was investigated using eight highly variable microsatellite loci. In total 706 individuals from eight locations with temporal replicates were assayed, covering an area from the French Bay of Biscay to the Aaland archipelago in the Baltic Sea. In contrast to previous genetic studies of turbot, we found significant genetic differentiation among samples with a maximum pairwise FST of 0.032. Limited or no genetic differentiation was found among samples within the Atlantic/North Sea area and within the Baltic Sea, suggesting high gene flow among populations in these areas. In contrast, there was a sharp cline in genetic differentiation going from the low saline Baltic Sea to the high saline North Sea. The data were explained best by two divergent populations connected by a hybrid zone; however, a mechanical mixing model could not be ruled out. A significant part of the genetic variance could be ascribed to variation among years within locality. Nevertheless, the population structure was relatively stable over time, suggesting that the observed pattern of genetic differentiation is biologically significant. This study suggests that hybrid zones are a common phenomenon for marine fishes in the transition area between the North Sea and the Baltic Sea and highlights the importance of using interspecific comparisons for inferring population structure in high gene flow species such as most marine fishes.  相似文献   

9.
10.
Long-term dynamics of main mesozooplankton species in the central Baltic Sea   总被引:14,自引:0,他引:14  
Long-term dynamics (1959–1997) of the copepod speciesPseudocalanus elongatus, Temora longicornis, Acartia spp. andCentropages hamatus, as well as the taxonomic group of cladocerans,are described for the open sea areas of the central Baltic Sea.Differences between areas, i.e. Bornholm Basin, Gdansk Deepand Gotland Basin, as well as between 5 year periods, were investigatedby means of Analysis of Variance (ANOVA). No significant differencesin mesozooplankton biomass between areas were found. On theother hand, clear time-trends could be demonstrated and relatedto salinity and temperature, with P.elongatus biomass mainlydependent on salinity and T.longicornis, Acartia spp. and cladoceransbiomasses dependent, to a large extent, on thermal conditions.Decreasing salinities since the early 1980s due to a lack ofmajor inflows of highly saline water from the North Sea andincreased river run-off, both triggered by meteorological conditions,obviously caused a decrease in biomass of P.elongatus. Contrarily,the standing stocks of the other abundant copepod species andcladocerans followed, to a large degree, the temperature developmentand showed, in general, an increase. The shift in species compositionduring this period is considered to be a reason for decreasinggrowth rates of Baltic herring (Clupea harengus) since the early1980s, and for sprat (Sprattus sprattus) since the early 1990s.Generally, it is suggested that low mesozooplankton biomassesin the 1990s were caused, at least partially, by amplified predationby clupeid fish stocks.  相似文献   

11.
Focusing on the Baltic archipelago, we address the questions: to what extent are the rhythms of natural and social systems compatible and under which criteria can we make them coincide? Existing mismatches between resource availability and human demand are identified as well as human attempts to dampen ecosystem fluctuations. By means of examples from forestry and fisheries, we illustrate how changes in property rights and technology have altered the diversity and resilience of the archipelago system. Our results suggest that intermediate scale processes of years up to a century are most critical for bringing natural and cultural systems in concordance. The time frame relevant to management and policy in the archipelago seems to correlate with eutrophication processes and the regrowth of forests. In fisheries, a shift from traditional to recreational fisheries has created fishery patterns badly adapted to the dynamics of the coastal ecosystem in disregard of traditional ecological knowledge. A multipurpose and adaptive management of natural resources is advocated as the most appropriate approach for promoting ecological and cultural diversity in the Baltic archipelago. Existing mismatches between the two have to be addressed by governing institutions at many hierarchical levels.  相似文献   

12.
13.
Aim To assess short‐term variability in the community composition and community structure of tintinnid ciliates, herbivores of the microzooplankton. Location North‐west Mediterranean Sea. Methods We sampled on 18 dates over a 4‐week period in 2004 at an open‐water site. Species were classified as ‘core species’, found on every date, or ‘occasional species’, absent on one or more dates. Species abundance distributions of the entire community, and separately the core and occasional species, were compared with geometric, log‐series and log‐normal distributions. Core and occasional species were compared in terms of the shell or lorica oral diameter (LOD), analogous to gape size. Results We found 11 core and 49 occasional species. Diversity metrics were stable compared with shifts in abundances. Core species accounted for the majority of individuals in all samples. On each date, 9–22 occasional species, representing 10–15% of the population, were found. Species richness of the occasionals was positively related to population size. The identities of the occasional species found were unrelated to the time between sampling. The species abundance distribution of the occasional population was best fit by a log‐series distribution, while that of the core species was best fit by a log‐normal distribution. The species abundance distribution of the entire community was best fit by a log‐series distribution. Most of the occasional species had LODs distinct from that of a core species and occupied size classes left empty by the core population. However, the most abundant and frequent of the occasional species had a LOD similar to that of a core species. Main conclusions Among tintinnids, which are planktonic protists, occasional species have a species abundance distribution pattern distinct from that of core species. Occasional species appeared to be composed of two groups, one of relatively abundant species and similar to core species, and a second group of ephemeral species with morphologies distinct from core species. The existence of two categories of occasional or rare species may be common: (1) those similar to, and thus perhaps able to replace, dominant species in the absence of a change in the environment; and (2) those distinct from dominant species and requiring different conditions to prosper.  相似文献   

14.
Changes in the structure and composition of a protistan community were characterized through the analysis of small-subunit ribosomal RNA gene (18S) sequences for a 3-day bottle incubation using a single sample collected in the western North Atlantic. Cloning and sequencing was used to investigate changes in perceived species richness and diversity as a consequence of environmental perturbation. The treatments included a control (unamended seawater), inorganic nutrient enrichment, and enrichment with a complex organic mixture. Five clone libraries were constructed and analyzed at the time of collection (t-0?h) and after 24 (t-24?h) and 72 (t-72?h) h for the control, and at t-72?h for the inorganic and organic enrichments, resulting in an analysis of 1,626 partial 18S rDNA sequences that clustered into 238 operational taxonomic units (OTUs). Analysis of the clone libraries revealed that protistan assemblages were highly dynamic and changed substantially at both the OTU level and higher taxonomic classifications during time frames consistent with many oceanographic methods used for measuring biological rates. Changes were most dramatic in enrichments, which yielded community compositions that were strongly dominated by one or a few taxa. Changes in community structure during incubation dramatically influenced estimates of species richness, which were substantially lower with longer incubation and especially with amendment, even though all incubated samples originated from the same aliquot of seawater. Containment and enrichment of the seawater sample led to the detection of otherwise undetected protistan taxa, suggesting that characterization of protistan diversity in a sample only at the time of collection could lead to an underrepresentation of unique taxa. Additionally, the rapid increase in the relative abundance of some members of the ??rare biosphere?? in our results implies an ecological importance of at least some of the taxa comprising the ??rare biosphere.??  相似文献   

15.
We investigate biogeographical, regional and sub‐regional‐scale responses of scarabaeine dung beetles to late Cenozoic changes in edaphic and climatic character that created a Savanna/Karoo transition zone in the Northern Cape, South Africa. Across a 50 200 km2 study area, the Northern Cape species pool comprised six biogeographical groups defined from distribution across southern Africa. These species groups contributed in different proportions to five regional assemblages defined from structural differences across the transition zone. Towards transition zone peripheries, regional assemblage structure was more strongly correlated to sandiness dating from Miocene to Pliocene deposition (Kalahari), aridity dating from Pliocene to Pleistocene climatic change (Bushmanland Karoo), or cooler temperatures dating from Miocene to Pliocene uplift (Upper Karoo). Correlates of sub‐regional assemblages trended to intensification of dominant drivers towards regional peripheries. Drivers of central transition zone, regional assemblages (‘Gariep Karoo’, ‘Gariep Stony Karoo’) showed no dominance. Biogeographically, endemism dominates the Northern Cape transition zone: south‐west arid groups in Nama Karoo regions; Kalahari plus north‐east savanna groups in the Kalahari. Regionally, transition drives assemblage structure: unique variance, 60% in the Kalahari, 21–30% in four Nama Karoo regions; shared variance (overlap), 25–65% between Kalahari and warmer Karoo regions, 11–71% between mainly cooler Karoo regions.  相似文献   

16.
Variabilities in chlorophyll a fluorescence, temperature andsalinity in the surface were recorded unattended on board twomerchant ships in the Baltic Sea. When these recordings werecomplemented by automated water sampling, it was possible toanalyze the phytoplankton species composition in 426 samples.In total, 22 potentially toxic phytoplankton species or generawere detected. Nodularia spumigena was the only species thatformed extensive blooms The system has proved to be an effectiveearly warning method for exceptional and eventually harmfulalgal blooms. The possibilities for using this method as analternative, or a complement, to conventional methods in marinephytoplankton monitoring are discussed.  相似文献   

17.
Hydrography, nutrient concentrations, primary production and sedimentation of particulate matter were studied during spring, late summer and autumn in the coastal area of the northern Baltic Sea, SW Finland. Vernal phytoplankton productivity peak and biomass maximum in early May were followed by high sedimentation rates of organic matter at the end of May. In summer, sedimentation rates of organic material were generally low. The decay rates of organic carbon in the sediment traps, estimated by measuring oxygen uptake of settled organic matter, varied between 0.005 to 0.08 d–1 and were on average 0.02 d–1. Decomposition of organic matter inside the sediment traps was mainly controlled by temperature, while also organic contents of settled material were significant. Microbial decomposition decreased sedimentation rates of organic carbon and nitrogen on average by 11% and 15%, respectively, during the whole study period of ca. 6 months. Resuspension of organic matter from sediment surface was estimated to contribute ca. 17 and 24% of the total sedimentation of organic carbon during spring and summer, respectively. Export production (i.e. primary sedimentation of organic carbon corrected by decomposition) was estimated to be 32% of the net primary production during the whole productive season and 42% in spring when the flux of primary settling material was greatest. Sedimentation of the spring bloom was the major annual supply of organic matter to the benthos (>80% of the total primary sedimentation).  相似文献   

18.
Increased precipitation is one projected outcome of climate change that may enhance the discharge of freshwater to the coastal zone. The resulting lower salinity, and associated discharge of both nutrients and dissolved organic carbon, may influence food web functioning. The scope of this study was to determine the net outcome of increased freshwater discharge on the balance between auto‐ and heterotrophic processes in the coastal zone. By using long‐term ecological time series data covering 13 years, we show that increased river discharge suppresses phytoplankton biomass production and shifts the carbon flow towards microbial heterotrophy. A 76% increase in freshwater discharge resulted in a 2.2 times higher ratio of bacterio‐ to phytoplankton production (Pb:Pp). The level of Pb:Pp is a function of riverine total organic carbon supply to the coastal zone. This is mainly due to the negative effect of freshwater and total organic carbon discharge on phytoplankton growth, despite a concomitant increase in discharge of nitrogen and phosphorus. With a time lag of 2 years the bacterial production recovered after an initial decline, further synergistically elevating the microbial heterotrophy. Current climate change projections suggesting increased precipitation may therefore lead to increased microbial heterotrophy, thereby decreasing the transfer efficiency of biomass to higher trophic levels. This prognosis would suggest reduced fish production and lower sedimentation rates of phytoplankton, a factor of detriment to benthic fauna. Our findings show that discharge of freshwater and total organic carbon significantly contributes to the balance of coastal processes at large spatial and temporal scales, and that model's would be greatly augmented by the inclusion of these environmental drivers as regulators of coastal productivity.  相似文献   

19.
The mesoscale phytoplankton distribution was studied as partof an international joint Baltic Sea Patchiness Experiment (PEX'86)during April–May 1986 in the open Baltic Proper. The studyperiod covered the peak phase of the phytoplankton spring bloom.The spatio-temporal dynamics of four dominating phytoplanktonspecies, Achnanthes taeniata, Chaetoceros spp., Skeletonemacostatum and Thalassiosira levanderi were studied within anarea of 20x40 nmi with grids of 2 and 4 nmi spatial resolution.The results showed highly varying spatial distributions forall species, and the variability was accentuated on the synopticspace scale before the development of the seasonal thermocline.The maxima of Chaetoceros spp. and Thalassiosira levanderi coincidedwith the anticyclonic and cyclonic eddies prevailing in thearea. Skeletonema costatum was found in high abundances onlywithin a warmer water mass of higher salinity advecting intothe area. The results pointed out that different successionalstages can simultaneously be found even in adjacent water massesand both the phytoplankton growth and composition during thebloom peak phase in the Central Baltic depend on complex factors,mainly those connected with mesoscale hydrodynamic features(eddies, frontal zones, jet currents).  相似文献   

20.
Summary Investigation of possible variations between prokaryotic and eukaryotic signal sequences of exported proteins has revealed unexpected differences. Apart from the known similarities (presence of a core hydrophobic sequence preceded by a positively charged amino terminus and followed by a flexible structure), we have found that the core is much more rigid in eukaryotic signals than in their prokaryotic counterparts, and that at both ends the constraints are much more stringent in bacteria than in human cells. The differences have been summarized as a set of 17 criteria describing noteworthy features discriminating between the two classes of signal peptides. The program we used permitted each class of sequences to be learned;Escherichia coli sequences were well learned (i.e., they could be recognized by the programs as having common features), whereas human sequences were found to exhibit a much wider variation. Thus it was possible to propose a consensus in the case of the bacterial peptides, but none (or a much looser one) in the case of the human sequences. Two sequences were exceptional among theE. coli signal peptides, those of lipoprotein and plasmid-borne beta-lactamase, suggesting that they have special origins or destinations. Finally, the differences found strongly suggest that the mode of secretion is rather different in the two types of organisms, in spite of the common features of the signal sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号