首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zeng Y  Qu X  Li H  Huang S  Wang S  Xu Q  Lin R  Han Q  Li J  Zhao RC 《FEBS letters》2012,586(16):2375-2381
Elucidation of the molecular mechanisms governing human adipose-derived mesenchymal stem cells (hASCs) osteogenic differentiation is of great importance for improving the treatment of bone-related diseases. In this study, we examined the role of microRNA (miR)-100 on the osteogenesis of hASCs. Overexpression of miR-100 inhibited osteogenic differentiation of hASCs in vitro, whereas downregulation of miR-100 enhanced the process. Target prediction analysis and dual luciferase report assay confirmed that bone morphogenetic protein receptor type II (BMPR2) was a direct target of miR-100. Furthermore, knockdown of BMPR2 by RNA interference inhibited osteogenic differentiation of hASCs, similar as the effect of upregulation miR-100. Taken together, our findings imply that miR-100 plays a negative role in osteogenic differentiation and might act through targeting BMPR2.  相似文献   

2.
3.
Rapid and extensive bone loss, one of the skeletal complications after spinal cord injury (SCI) occurrence, drastically sacrifices the life quality of SCI patients. It has been demonstrated that microRNA (miRNA) dysfunction plays an important role in the initiation and development of bone loss post-SCI. Nevertheless, the effect of miR-19b-3p on bone loss after SCI is unknown and the accurate mechanism is left to be elucidated. The present work was conducted to explore the role of miR-19b-3p/phosphatase and tensin homolog deleted on chromosome ten (PTEN) axis on osteogenesis after SCI and further investigates the underlying mechanisms. We found that miR-19b-3p level was increased in the femurs of SCI rats with decreased autophagy. The overexpression of miR-19b-3p in bone marrow mesenchymal stem cells (BMSCs) targeted down-regulation of PTEN expression, facilitated protein kinase B (Akt) and mammalian target of rapamycin (mTOR) phosphorylation, and thereby suppressing BMSCs osteogenic differentiation via autophagy. Besides, the inhibiting effects of miR-19b-3p on osteogenic differentiation of BMSCs could be diminished by autophagy inducer rapamycin. Meanwhile, bone loss after SCI in rats was also reversed by antagomir-19b-3p treatment, suggesting miR-19b-3p was an essential target for osteogenic differentiation via regulating autophagy. These results indicated that miR-19b-3p was involved in bone loss after SCI by inhibiting osteogenesis via PTEN/Akt/mTOR signalling pathway.  相似文献   

4.
5.
Bone marrow-derived mesenchymal stem cells (BM-MSCs), the common progenitor cells of adipocytes and osteoblasts, have been recognized as the key mediator during bone formation. Herein, our study aim to investigate molecular mechanisms underlying circular RNA (circRNA) AFF4 (circ_AFF4)-regulated BM-MSCs osteogenesis. BM-MSCs were characterized by FACS, ARS, and ALP staining. Expression patterns of circ_AFF4, miR-135a-5p, FNDC5/Irisin, SMAD1/5, and osteogenesis markers, including ALP, BMP4, RUNX2, Spp1, and Colla1 were detected by qRT-PCR, western blot, or immunofluorescence staining, respectively. Interactions between circ_AFF4 and miR-135a-5p, FNDC5, and miR-135a-5p were analyzed using web tools including TargetScan, miRanda, and miRDB, and further confirmed by luciferase reporter assay and RNA pull-down. Complex formation between Irisin and Integrin αV was verified by Co-immunoprecipitation. To further verify the functional role of circ_AFF4 in vivo during bone formation, we conducted animal experiments harboring circ_AFF4 knockdown, and born samples were evaluated by immunohistochemistry, hematoxylin and eosin, and Masson staining. Circ_AFF4 was upregulated upon osteogenic differentiation induction in BM-MSCs, and miR-135a-5p expression declined as differentiation proceeds. Circ_AFF4 knockdown significantly inhibited osteogenesis potential in BM-MSCs. Circ_AFF4 stimulated FNDC5/Irisin expression through complementary binding to its downstream target molecule miR-135a-5p. Irisin formed an intermolecular complex with Integrin αV and activated the SMAD1/5 pathway during osteogenic differentiation. Our work revealed that circ_AFF4, acting as a sponge of miR-135a-5p, triggers the promotion of FNDC5/Irisin via activating the SMAD1/5 pathway to induce osteogenic differentiation in BM-MSCs. These findings gained a deeper insight into the circRNA-miRNA regulatory system in the bone marrow microenvironment and may improve our understanding of bone formation-related diseases at physiological and pathological levels.Subject terms: Stem cells, Diseases  相似文献   

6.
Objective:To explore the regulation of LncRNA TUG /miRNA-204/SIRT1 pathway on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), so as to provide a new theoretical basis for the clinical treatment of osteoporosis.Methods:Detect changes of LncRNA and miRNA expression predicted in post-differentiation BMSCs with Western blot and qPCR tests. Verify the regulatory relationship between LncRNA and miRNA, miRNA and SIRT1 through the luciferase reporter assay. Transfect recombinant plasmids with LncRNA and their shRNA or transfected miRNA mimics and inhibitors.Results:According to the bioinformatic prediction, LncRNA TUG/miR-204 affected the regulation of SIRT1 on osteogenic differentiation of BMSCs, which were consistent with the results of luciferase reporter assay, namely, there are direct regulation targets between LncRNA TUG and miR-204, miR-204 and SIRT1. Overexpression and knockdown experiments revealed that LncRNA TUG overexpression/knockdown down/up-regulated miR-204 expression, which otherwise increased/decreased SIRT1 levels, and was positively correlated with osteogenic differentiation of BMSCs. Conversely, miR-204 was negatively correlated with LncRNA TUG and SIRT1, and negatively regulated osteogenic differentiation.Conclusion:This study found the direct regulatory relationship of LncRNA TUG/miR-204/SIRT1 during the osteogenic differentiation of BMSCs, and revealed that SIRT1 positively regulates the osteogenic differentiation of BMSCs, which provides a theoretical basis and potential therapeutic targets for a series of osteogenic differentiation-related diseases including osteoporosis.  相似文献   

7.
8.
MicroRNAs are a group of endogenous regulators that participate in several cellular physiological processes. However, the role of miR-137 in the osteogenic differentiation of human adipose-derived stem cells (hASCs) has not been reported. This study verified a general downward trend in miR-137 expression during the osteogenic differentiation of hASCs. MiR-137 knockdown promoted the osteogenesis of hASCs in vitro and in vivo. Mechanistically, inhibition of miR-137 activated the bone morphogenetic protein 2 (BMP2)-mothers against the decapentaplegic homolog 4 (SMAD4) pathway, whereas repressed lysine-specific histone demethylase 1 (LSD1), which was confirmed as a negative regulator of osteogenesis in our previous studies. Furthermore, LSD1 knockdown enhanced the expression of BMP2 and SMAD4, suggesting the coordination of LSD1 in the osteogenic regulation of miR-137. This study indicated that miR-137 negatively regulated the osteogenic differentiation of hASCs via the LSD1/BMP2/SMAD4 signaling network, revealing a new potential therapeutic target of hASC-based bone tissue engineering.  相似文献   

9.
Osteoporosis is closely associated with the dysfunction of bone metabolism, which is caused by the imbalance between new bone formation and bone resorption. Osteogenic differentiation plays a vital role in maintaining the balance of bone microenvironment. The present study investigated whether melatonin participated in the osteogenic commitment of bone marrow mesenchymal stem cells (BMSCs) and further explored its underlying mechanisms. Our data showed that melatonin exhibited the capacity of regulating osteogenic differentiation of BMSCs, which was blocked by its membrane receptor inhibitor luzindole. Further study demonstrated that the expression of miR‐92b‐5p was up‐regulated in BMSCs after administration of melatonin, and transfection of miR‐92b‐5p accelerated osteogenesis of BMSCs. In contrast, silence of miR‐92b‐5p inhibited the osteogenesis of BMSCs. The increase in osteoblast differentiation of BMSCs caused by melatonin was attenuated by miR‐92b‐5p AMO as well. Luciferase reporter assay, real‐time qPCR analysis and western blot analysis confirmed that miR‐92b‐5p was involved in osteogenesis by directly targeting intracellular adhesion molecule‐1 (ICAM‐1). Melatonin improved the expression of miR‐92b‐5p, which could regulate the differentiation of BMSCs into osteoblasts by targeting ICAM‐1. This study provided novel methods for treating osteoporosis.  相似文献   

10.
Adipose-derived mesenchymal stem cells (ADSCs) are promising candidate for regenerative medicine to repair non-healing bone defects due to their high and easy availability. However, the limited osteogenic differentiation potential greatly hinders the clinical application of ADSCs in bone repair. Accumulating evidences demonstrate that circular RNAs (circRNAs) are involved in stem/progenitor cell fate determination, but their specific role in stem/progenitor cell osteogenesis, remains mostly undescribed. Here, we show that circRNA-vgll3 originating from the vgll3 locus markedly enhances osteogenic differentiation of ADSCs; nevertheless, silencing of circRNA-vgll3 dramatically attenuates ADSC osteogenesis. Furthermore, we validate that circRNA-vgll3 functions in ADSC osteogenesis through a circRNA-vgll3/miR-326-5p/integrin α5 (Itga5) pathway. Itga5 promotes ADSC osteogenic differentiation and miR-326-5p suppresses Itga5 translation. CircRNA-vgll3 directly sequesters miR-326-5p in the cytoplasm and inhibits its activity to promote osteogenic differentiation. Moreover, the therapeutic potential of circRNA-vgll3-modified ADSCs with calcium phosphate cement (CPC) scaffolds was systematically evaluated in a critical-sized defect model in rats. Our results demonstrate that circRNA-vgll3 markedly enhances new bone formation with upregulated bone mineral density, bone volume/tissue volume, trabeculae number, and increased new bone generation. This study reveals the important role of circRNA-vgll3 during new bone biogenesis. Thus, circRNA-vgll3 engineered ADSCs may be effective potential therapeutic targets for bone regenerative medicine.Subject terms: Epigenetics, Stem-cell research  相似文献   

11.
miRNAs are endogenously expressed 18- to 25-nucleotide RNAs that regulate gene expression through translational repression by binding to a target mRNA. Recently, it has been indicated that miRNAs are closely related to osteogenesis. Our previous data suggested that miR-30 family members might be important regulators during the biomineralization process. However, whether and how they modulate osteogenic differentiation have not been explored. In this study, we demonstrated that miR-30 family members negatively regulate BMP-2-induced osteoblast differentiation by targeting Smad1 and Runx2. Evidentially, overexpression of miR-30 family members led to a decrease of alkaline phosphatase activity, whereas knockdown of them increased the activity. Then bioinformatic analysis identified potential target sites of the miR-30 family located in the 3' untranslated regions of Smad1 and Runx2. Western blot analysis and quantitative RT-PCR assays demonstrated that miR-30 family members inhibit Smad1 gene expression on the basis of repressing its translation. Furthermore, dual-luciferase reporter assays confirmed that Smad1 is a direct target of miR-30 family members. Rescue experiments that overexpress Smad1 and Runx2 significantly eliminated the inhibitory effect of miR-30 on osteogenic differentiation and provided strong evidence that miR-30 mediates the inhibition of osteogenesis by targeting Smad1 and Runx2. Also, the inhibitory effects of the miR-30 family were validated in mouse bone marrow mesenchymal stem cells. Therefore, our study uncovered that miR-30 family members are key negative regulators of BMP-2-mediated osteogenic differentiation.  相似文献   

12.
Mesenchymal stem cells (MSCs) can differentiate into several distinct cell types, including osteoblasts and adipocytes. The balance between osteogenic and adipogenic differentiation is disrupted in several osteogenic-related disorders, such as osteoporosis. So far, little is known about the molecular mechanisms that drive final lineage commitment of MSCs. In this study, we revealed that miR-17-5p and miR-106a have dual functions in the modulation of human adipose-derived mesenchymal stem cells (hADSCs) commitment by gain- and loss-of-function assays. They could promote adipogenesis and inhibit osteogenesis. Luciferase reporter assay, western blot and ELISA suggested BMP2 was a direct target of miR-17-5p and miR-106a. Downregulation of endogeneous BMP2 by RNA interference suppressed osteogenesis and increased adipogenesis, similar to the effect of miR-17-5p and miR-106a upregulation. Moreover, the inhibitory effects of miR-17-5p on osteogenic and adipogenic differentiation of hADSCs could be reversed by BMP2 RNA interference. In conclusion, miR-17-5p and miR-106a regulate osteogenic and adipogenic lineage commitment of hADSCs by directly targeting BMP2, and subsequently decreased osteogenic TAZ, MSX2 and Runx2, and increased adipogenic C/EBPα and PPARγ.  相似文献   

13.
Inducing the osteogenic differentiation from bone marrow stromal cells (BMSCs) might be a potent strategy for treating bone loss and nonunion during fracture and improving fracture healing. Among several signaling pathways involved, mitogen-activated protein kinases (MAPKs) have been reported to play a critical role. Magnesium (Mg)-based alloys, including Mg–Zn alloy, have been used clinically as implants in the musculoskeletal field and could promote BMSC osteogenic differentiation. However, the underlying mechanisms remain unclear. In this study, we produced Mg–Zn alloy consists of Mg and low concentrations of Zn, calcium carbonate, and β-tricalcium phosphate (β-TCP; manifesting process not shown), prepared Mg, Zn, and Mg–Zn extracts, and investigated the specific effects of these extracts on human BMSC (hBMSC) osteogenic differentiation and MAPK signaling. Mg extracts and Mg–Zn extracts could significantly promote the osteogenic differentiation of hBMSCs as manifested as increased alkaline phosphatase levels, enhanced calcium nodules formation, and increased messenger RNA expression and protein levels of osteogenesis markers, including BMPs, Col-I, Runx2, and Osx; in the meantime, Mg culture medium (CM) and Mg–Zn CM both significantly enhanced the activation of MAPK signaling in hBMSCs. By adding ERK1/2 signaling, p38 signaling, or JNK signaling inhibitor to Mg–Zn CM, or conducting p38 MAPK silence in hBMSCs, we revealed that these extracts might promote hBMSC osteogenic differentiation via p38 MAPK signaling and MAPK-regulated Runx2/Osx. In conclusion, Mg2+ in β-TCP/Mg–Zn extract promotes the osteogenic differentiation of hBMSCs via MAPK-regulated Runx2/Osx interaction.  相似文献   

14.
lncRNAs are an emerging class of regulators involved in multiple biological processes. MEG3, an lncRNA, acts as a tumor suppressor, has been reported to be linked with osteogenic differentiation of MSCs. However, limited knowledge is available concerning the roles of MEG3 in the multilineage differentiation of hASCs. The current study demonstrated that MEG3 was downregulated during adipogenesis and upregulated during osteogenesis of hASCs. Further functional analysis showed that knockdown of MEG3 promoted adipogenic differentiation, whereas inhibited osteogenic differentiation of hASCs. Mechanically, MEG3 may execute its role via regulating miR-140-5p. Moreover, miR-140-5p was upregulated during adipogenesis and downregulated during osteogenesis in hASCs, which was negatively correlated with MEG3. In conclusion, MEG3 participated in the balance of adipogenic and osteogenic differentiation of hASCs, and the mechanism may be through regulating miR-140-5p.  相似文献   

15.
Forkhead box O1 (FOXO1) is a key regulator of osteogenesis. The aim of this study was to identify the mechanisms of microRNAs (miRNAs) targeting FOXO1 in osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs). Three miRNA target prediction programs were used to search for potential miRNAs that target FOXO1. Quantitative real-time polymerase chain reaction was conducted to detect the expression of miR-1271-5p and FOXO1 during osteogenic differentiation. Target gene prediction and screening, luciferase reporter assay was used to verify the downstream target gene of miR-1271-5p. The expression levels of FOXO1 and Runx2 were detected by RT-qPCR and Western blot analysis. Alkaline phosphatase (ALP) activity and matrix mineralization were detected by biochemical methods. The expression levels of Runx2, ALP, and osteocalcin were detected by RT-qPCR. Our results showed that miR-1271-5p was downregulated during osteogenic induction. And the expression levels of miR-1271-5p were higher in osteoporotic tissues than that in adjacent nonosteoporotic tissues. The expression levels of FOXO1 were lower in osteoporotic tissues than that in adjacent nonosteoporotic tissues. And a negative correlation was found between miR-1271-5p and FOXO1 in osteoporotic tissues. Overexpression of miR-1271-5p downregulated FOXO1 and inhibited osteogenic differentiation in hMSCs. Overexpression of miR-1271-5p downregulated the expression of osteogenic markers and reduced ALP activity. In addition, ectopic expression of FOXO1 reversed the effect of miR-1271-5p on osteogenic differentiation. In conclusion, miR-1271-5p functioned as a therapeutic target of osteogenic differentiation in hMSCs by inhibiting FOXO1, which provides valuable insights into the use of miR-1271-5p as a target in the treatment of osteoporosis and other bone metabolic diseases.  相似文献   

16.
17.
Background

Recently, more and more circular RNAs (circRNAs) have been identified in osteogenesis. In this study, we aimed to explore the effect of circ_FBLN1 on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs).

Methods

The protein levels of osteogenesis-related genes, let-7i-5p, frizzled class receptor 4 (FZD4), Ki67, Wnt6 and β-catenin were measured by western blot assay. The levels of circ_FBLN1, FBLN1 mRNA and FZD4 mRNA were determined by quantitative real-time polymerase chain reaction (qRT-PCR) assay. The feature of circ_FBLN1 was investigated by RNase R and Actinomycin D assays. Cell proliferation ability was evaluated by colony formation assay and 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The targeting relationship between let-7i-5p and circ_FBLN1 or FZD4 was verified by dual-luciferase reporter assay.

Results

Circ_FBLN1 level was enhanced during the osteogenic differentiation of hBMSCs. Silencing of circ_FBLN1 repressed cell proliferation and osteogenic differentiation in hBMSCs. For mechanism analysis, circ_FBLN1 was found to act as a sponge for let-7i-5p and FZD4 served as a direct target gene of let-7i-5p. Let-7i-5p was downregulated during the osteogenic differentiation of hBMSCs and let-7i-5p inhibition restored the effects of circ_FBLN1 knockdown on the proliferation and osteogenesis of hBMSCs. Moreover, let-7i-5p overexpression suppressed cell proliferation and osteogenesis in hBMSCs through targeting FZD4. In addition, circ_FBLN1 knockdown reduced the levels of Wnt6 and β-catenin in hBMSCs, indicating the inactivation of Wnt/β-catenin pathway.

Conclusion

Knockdown of circ_FBLN1 inhibited the proliferation and osteogenesis of hBMSCs by regulating let-7i-5p/FZD4 axis and repressing Wnt/β-catenin pathway.

  相似文献   

18.
Exploring the molecular mechanisms that regulate the osteogenesis of human mesenchymal stem cells (hMSCs) will bring us more efficient methods for improving the treatment of bone-related diseases. In this study, we analyzed the effects of miR-31 on the osteogenesis of hMSCs. The overexpression of miR-31 repressed the osteogenesis of hMSCs, whereas the downregulation enhanced this process. SATB2 was testified to be a direct target of miR-31, and its effects on the osteogenesis were also described. Most importantly, the knockdown of SATB2 attenuated miR-31’s osteogenic effects. Taken together, our findings suggest that miR-31 regulates the osteogenesis of hMSCs by targeting SATB2.  相似文献   

19.
Steroid-induced osteonecrosis of the femoral head (SIONFH) has been a common disease following corticosteroid therapy. Presently, we aim to explore the functions of circular RNA (circ) PVT1 in SIONFH rats and the underlying mechanism. Glucocorticoid (GC) was used to treat SD rats and bone marrow-derived mesenchymal stem cells (BMSCs) to construct SIONFH model in vitro and in vivo, respectively. The pathological injury of the femoral head in the SIONFH rats was detected via haematoxylin-eosin (HE) staining and immunohistochemistry (IHC). The osteogenic differentiation, proliferation and apoptosis of BMSCs were detected. Western blot was used to detect Smad7, Bax, Bcl2 and Smad2/3. The potential targets of circPVT1 and miR-21-5p were validated through luciferase reporter gene assay and RNA pull-down assay, respectively. We found that CircPVT1 was decreased in the femoral head of SIONFH rats and GC-treated BMSCs, while miR-21-5p was markedly up-regulated. Overexpressed circPVT1 attenuated the apoptosis and cell viability inhibition of BMSCs induced by GC, while miR-21-5p up-regulation had the opposite effects. What's more, the in vivo experiments confirmed that up-regulating circPVT1 repressed osteonecrosis in SIONFH rats through repressing apoptosis. Mechanistically, circPVT1 functioned as a ceRNA of miR-21-5p, which targeted at the 3'untranslated region of Smad7. CircPVT1 enhancing Smad7 and mitigating GC activated TGFβ/Smad2/3 pathway through inhibiting miR-21-5p. In conclusion, CircPVT1 exerts protective effects against SIONFH via modulating miR-21-5p-mediated Smad7/TGFβ pathway.  相似文献   

20.
Illumination of the molecular mechanisms regulating odontoblastic differentiation of dental papilla cells is of great significance for proper dentinogenesis and dental pulp regeneration. In this study, we discovered that microRNA (miR)-3065-5p is up-regulated during odontoblastic differentiation. Overexpression of miR-3065-5p promoted odontoblastic differentiation in vitro. Dual luciferase report assay verified that miR-3065-5p could bind to the 3′UTR of bone morphogenetic protein receptor type II (BMPR2), which dramatically increased in the beginning of odontoblastic differentiation but decreased in the terminal differentiation stage. Inhibition of Bmpr2 in the early stage retarded odontoblastic differentiation while knockdown of Bmpr2 in the terminal stage enhanced odontoblastic differentiation, resembling the effect of miR-3065-5p. Taken together, our present study suggests that miR-3065-5p positively regulates odontoblastic differentiation by directly binding to Bmpr2 in the terminal differentiation stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号