首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shewanella oneidensis MR-1 is capable of forming highly structured surface-attached communities. By DNase I treatment, we demonstrated that extracellular DNA (eDNA) serves as a structural component in all stages of biofilm formation under static and hydrodynamic conditions. We determined whether eDNA is released through cell lysis mediated by the three prophages LambdaSo, MuSo1 and MuSo2 that are harbored in the genome of S. oneidensis MR-1. Mutant analyses and infection studies revealed that all three prophages may individually lead to cell lysis. However, only LambdaSo and MuSo2 form infectious phage particles. Phage release and cell lysis already occur during early stages of static incubation. A mutant devoid of the prophages was significantly less prone to lysis in pure culture. In addition, the phage-less mutant was severely impaired in biofilm formation through all stages of development, and three-dimensional growth occurred independently of eDNA as a structural component. Thus, we suggest that in S. oneidensis MR-1 prophage-mediated lysis results in the release of crucial biofilm-promoting factors, in particular eDNA.  相似文献   

2.
We have investigated the possibility of a fixed terminus for bidirectional replication in Escherichia coli by determining whether a displacement of the chromosome replication origin results in an inversion of the direction of replication for markers located in the region where termination normally occurs.Three prophages have been used to mark four chromosomal sites: Mu-1, integrated in either malA (74 min) or malB (90 min); P2 in location H (43 min) and φ80 (27 min). Integrative suppression, promoted by a resistance transfer factor, resulted in origin displacements greater than 20 minutes in each direction. In the parental strains and in their integratively suppressed derivatives we have established, for each prophage: (a) the direction of replication (by hybridizing labelled Okazaki fragments to separated phage strands); (b) the relative frequency, in the exponential phase of growth (by DNA-DNA hybridization of long-term labelled DNA to denatured phage DNA).The following conclusions have been reached. (1) In conditions of integrative suppression, chromosome replication is bidirectional, starting from the inserted episome. (2) The direction of replication of each of the two prophages, P2 and φ80, is invariant in the termination region. (3) Marker frequency analysis has revealed that P2 prophage and φ80 prophage are on two different replication units.These results suggest that replication forks, travelling in either direction, must stop at a site located between 27 and 43 minutes on the genetic map, presumably the terminus of replication (tre).  相似文献   

3.
Four prophages (phiNM1-4) were identified in the genome of Staphylococcus aureus Newman, a human clinical isolate. phiNM1, phiNM2 and phiNM4, members of the siphoviridae family, insert at different sites (poiA, downstream of isdB and geh) in the staphylococcal chromosome. phiNM3, a beta-haemolysin (hlb) converting phage, encodes modulators of innate immune responses (sea, sak, chp and scn) in addition to other virulence genes. Replication of phiNM1, phiNM2 and phiNM4 occurs in culture and during animal infection, whereas phiNM3 prophage replication was not observed. Prophages were excised from the chromosome and S. aureus variants lacking phiNM3 or phiNM1, phiNM2 and phiNM4 displayed organ specific virulence defects in a murine model of abscess formation. S. aureus Newman lacking all four prophages was unable to cause disease, thereby revealing essential contributions of prophages to the pathogenesis of staphylococcal infections.  相似文献   

4.
5.
Mycobacterium tuberculosis complex (MTBC) is notorious for causing diseases, such as tuberculosis. Tuberculosis caused by M. tuberculosis remains a global public health concern. Two prophages, phiRv1 and phiRv2, can be found among most MTBC genomes. However, no precise functions have been assigned for the two prophages. In this paper, to find out the function of these two prophages, the distribution and function of phiRv1 and phiRv2 in MTBC genomes were analyzed from multiple omics data. We found that complex insertion, deletion, and reorganization appeared on the locus of two prophages in MTBC genomes; some genes of the two prophages can be translated and are functional from proteomic data; the expression of other prophage genes, such as Rv1577c, Rv2650c, Rv2652c, Rv2659c, and Rv2658c, can vary with environmental stresses and might enhance the fitness of MTBC. These data will facilitate our in-depth understanding of their function.  相似文献   

6.
We have studied the interaction of bacteriophages Mu and lambda after their simultaneous induction and the influence of lambda on Mu-dependent mobilization of the E. coli chromosome by the RP4 plasmid. Heterolysogenic E. coli strains carrying Mu-lambda-Mu structures were constructed (Faelen et al. 1975). The Mu and lambda prophages are linked in such structures, and the functions of some lambda genes are disturbed depending on the integration site. A study of the inhibition of Mu growth by lambda after their simultaneous induction was performed and the region of the lambda genome (R-H) which contains the gene(s) responsible for the inhibitory effect of lambda on Mu was identified. The efficiency of Mu-dependent mobilization of the bacterial chromosome by RP4 is shown to be an order of magnitude lower in strains with unlinked Mu and lambda and an order of magnitude higher in strains with some permutations of the lambda prophage than in the control Mu-monolysogenic E. coli strain. Thus the effect of Mu on mobilization depends on the localization of the lambda prophage and on the functioning of its genome within a Mu-lambda-Mu structure. It is presumed that the mobilization of the bacterial chromosome is stimulated by effective replication of the Mu genome starting from the ori site (origin of replication) of the lambda prophage within the Mu-lambda-Mu structure. We propose a model to explain the interaction of Mu and lambda in E. coli strains carrying Mu-lambda-Mu structures.  相似文献   

7.
Hybrid genetic elements, Mud-P and Mud-Q (collectively, Mud-P22s), have been constructed that carry two-thirds of the temperate Salmonella phage P22 genome sandwiched between the ends of transposon Mu. Insertions of these elements in the Salmonella chromosome generate locked-in P22 prophages that cannot excise. Upon induction (as a consequence of the inactivation of P22 c2 repressor), a locked-in prophage replicates its DNA in situ, resulting in the amplification of neighboring regions of the chromosome and the processive packaging of three contiguous headsful of adjacent DNA in one direction from the P22 packaging site, pac. Phage particles in an induced lysate of a Mud-P22 lysogen contain DNA molecules corresponding to several minutes of chromosomal DNA adjacent to the site of prophage insertion and transduce nearby genetic markers with high efficiencies. Mud-P22 prophages have been introduced into an F' episome by transposition; resident Mud insertions on the Salmonella chromosome may be converted to Mud-P22 insertions by homologous recombination in P22-mediated transductional crosses.  相似文献   

8.
The genes encoding cholera toxin, the principal virulence factor of Vibrio cholerae, are part of the circular single-stranded DNA genome of CTXphi. In toxigenic V. cholerae strains, the CTXphi genome is typically found in integrated arrays of tandemly arranged CTX prophages. Infected cells that lack a chromosomal integration site harbour the CTXphi genome as a plasmid (pCTX). We studied the replication of pCTX and found several indications that this plasmid replicates via a rolling-circle (RC) mechanism. The initiation and termination sites for pCTX plus-strand DNA synthesis were mapped to a 22 bp sequence that contains inverted repeats and a nonanucleotide motif found in the plus-strand origins of several RC replicons. Furthermore, similar to other RC replicons, replication of plasmids containing duplicated pCTX origins resulted in the deletion of sequences between the two origins and the formation of a single chimeric origin. Our previous work revealed that CTX prophage arrays give rise to hybrid CTX virions that contain sequences derived from two adjacent prophages. We now report that the boundaries between the sequences contributed to virions by the upstream and the downstream prophages in an array correspond to the site at which synthesis of plus-strand pCTX DNA is initiated and terminated. These data support the model that plus-strand CTXphi DNA is generated from chromosomal prophages via a novel process analogous to RC replication.  相似文献   

9.
Phage as agents of lateral gene transfer   总被引:10,自引:0,他引:10  
When establishing lysogeny, temperate phages integrate their genome as a prophage into the bacterial chromosome. Prophages thus constitute in many bacteria a substantial part of laterally acquired DNA. Some prophages contribute lysogenic conversion genes that are of selective advantage to the bacterial host. Occasionally, phages are also involved in the lateral transfer of other mobile DNA elements or bacterial DNA. Recent advances in the field of genomics have revealed a major impact by phages on bacterial chromosome evolution.  相似文献   

10.
Insertion and replication of the Pseudomonas aeruginosa mutator phage D3112   总被引:4,自引:0,他引:4  
D3112 is a temperate bacteriophage of P. aeruginosa with heterogeneous sequences at one extremity of the virion DNA molecule. Infection of strain PAOl with phage D3112 results in a 40- to 65-fold increase in the frequency of ami mutants resistant to fluoroacetamide. Nine ami::D3112 prophages have been mapped to distinct sites within the ami locus by Southern blotting experiments with a cloned ami+ probe. All prophages have the same restriction map as the D3112 genome extracted from phage particles. The position of D3112 insertions correlates with the phenotype and reversion behavior of the ami mutants. Induction of D3112cts prophages results in amplification of internal prophage segments as discrete restriction fragments before the terminal viral fragments are visible as sharp hybridizing species. This indicates that D3112 replication is accompanied by recombination of prophage termini to numerous sites in the bacterial genome. Chromosomal junction fragments of an ami::D3112cts prophage are maintained through most of the replication cycle but are cleaved shortly before cell lysis, apparently by the viral encapsidation system.  相似文献   

11.
Almost all bacterial genomes harbour prophages, yet it remains unknown why prophages integrate into tRNA-related genes. Approximately 1/3 of Shewanella isolates harbour a prophage at the tmRNA (ssrA) gene. Here, we discovered a P2-family prophage integrated at the 3′-end of ssrA in the deep-sea bacterium S. putrefaciens. We found that ~0.1% of host cells are lysed to release P2 constitutively during host growth. P2 phage production is induced by a prophage-encoded Rep protein and its excision is induced by the Cox protein. We also found that P2 genome excision leads to the disruption of wobble base pairing of SsrA due to site-specific recombination, thus disrupting the trans-translation function of SsrA. We further demonstrated that P2 excision greatly hinders growth in seawater medium and inhibits biofilm formation. Complementation with a functional SsrA in the P2-excised strain completely restores the growth defects in seawater medium and partially restores biofilm formation. Additionally, we found that products of the P2 genes also increase biofilm formation. Taken together, this study illustrates a symbiotic relationship between P2 and its marine host, thus providing multiple benefits for both sides when a phage is integrated but suffers from reduced fitness when the prophage is excised.  相似文献   

12.
CTXphi is a filamentous, lysogenic bacteriophage whose genome encodes cholera toxin, the primary virulence factor produced by Vibrio cholerae. CTX prophages in O1 El Tor and O139 strains of V. cholerae are found within arrays of genetically related elements integrated at a single locus within the V. cholerae large chromosome. The prophages of O1 El Tor and O139 strains generally yield infectious CTXphi. In contrast, O1 classical strains of V. cholerae do not produce CTXphi, although they produce cholera toxin and they contain CTX prophages integrated at two sites. We have identified the second site of CTX prophage integration in O1 classical strains and characterized the classical prophage arrays genetically and functionally. The genes of classical prophages encode functional forms of all of the proteins needed for production of CTXphi. Classical CTX prophages are present either as solitary prophages or as arrays of two truncated, fused prophages. RS1, a genetic element that is closely related to CTXphi and is often interspersed with CTX prophages in El Tor strains, was not detected in classical V. cholerae. Our model for CTXphi production predicts that the CTX prophage arrangements in classical strains will not yield extrachromosomal CTX DNA and thus will not yield virions, and our experimental results confirm this prediction. Thus, failure of O1 classical strains of V. cholerae to produce CTXphi is due to overall deficiencies in the structures of the arrays of classical prophages, rather than to mutations affecting individual CTX prophage genes.  相似文献   

13.
Temperate phages can integrate their genomes into a specific region of a host chromosome to produce lysogens (prophage). During genome insertion, prophages may interrupt the gene coding sequence. In Bacillus subtilis, the sigma factor gene sigK is interrupted by a 48 kb prophage‐like element. sigK is a composite coding sequence from two partial genes during sporulation. For over two decades, however, no further examples of DNA element‐mediated gene reconstitution other than sigK have been identified in spore formers. Here we report that the gene for dipicolinic acid (DPA) synthetase β subunit spoVFB in B. weihenstephanensis KBAB4 is interrupted by a prophage‐like element named vfbin. DPA is synthesized in the mother cell and required for maintaining spore dormancy. We found that spoVFB was a composite coding sequence generated in the mother cell via chromosomal rearrangement that excised vfbin. Furthermore, vfbin caused excision after phage‐inducer treatment, but vfbin appeared to be defective as a prophage. We also found various spore‐forming bacteria in which sporulation‐related genes were disrupted by prophage‐like DNA elements. These results demonstrate the first example of a similar mechanism that affects a sporulation gene other than sigK and suggest that this prophage‐mediated DNA rearrangement is a common phenomenon in spore‐forming bacteria.  相似文献   

14.

Background

Prophages are integrated viral forms in bacterial genomes that have been found to contribute to interstrain genetic variability. Many virulence-associated genes are reported to be prophage encoded. Present computational methods to detect prophages are either by identifying possible essential proteins such as integrases or by an extension of this technique, which involves identifying a region containing proteins similar to those occurring in prophages. These methods suffer due to the problem of low sequence similarity at the protein level, which suggests that a nucleotide based approach could be useful.

Methodology

Earlier dinucleotide relative abundance (DRA) have been used to identify regions, which deviate from the neighborhood areas, in genomes. We have used the difference in the dinucleotide relative abundance (DRAD) between the bacterial and prophage DNA to aid location of DNA stretches that could be of prophage origin in bacterial genomes. Prophage sequences which deviate from bacterial regions in their dinucleotide frequencies are detected by scanning bacterial genome sequences. The method was validated using a subset of genomes with prophage data from literature reports. A web interface for prophage scan based on this method is available at http://bicmku.in:8082/prophagedb/dra.html. Two hundred bacterial genomes which do not have annotated prophages have been scanned for prophage regions using this method.

Conclusions

The relative dinucleotide distribution difference helps detect prophage regions in genome sequences. The usefulness of this method is seen in the identification of 461 highly probable loci pertaining to prophages which have not been annotated so earlier. This work emphasizes the need to extend the efforts to detect and annotate prophage elements in genome sequences.  相似文献   

15.
The ctxAB genes encoding cholera toxin, reside in the genome of a filamentous bacteriophage CTXphi. The presence of CTX prophage in non-epidemic environmental Vibrio cholerae strains is rare. The CTX prophage, the lysogenic form of CTXphi in V. cholerae, is comprised of the 'RS2' and the 'Core'. Analysis of the rstR gene present in the RS2 region of the CTX prophage revealed the presence of new alleles of the prophages in four environmental non-O1, non-O139 strains VCE22 (O36), VCE228 (O27), VCE232 (O4) and VCE233 (O27), and the CTX prophages are located in the small chromosomes. Phylogenetic analysis based on the nucleotide sequences of the rstR and orfU (present in the core) genes of these prophages placed them in a single unique cluster, which is distally located compared with that of epidemic V. cholerae O1 strains. Further analysis indicated that the genome of the prophage present in the strain VCE22 is devoid of the ctxAB genes, called pre-CTX prophage and the strain also possess the toxin-coregulated pilus protein coding gene tcpA of classical type, another important pathogenicity determining locus of the epidemic V. cholerae strains. Comparative analysis of the nucleotide sequences of the rstR and orfU genes indicated that the pre-CTX prophage of VCE22 might be the progenitor of new alleles of the CTX prophages present in these environmental strains.  相似文献   

16.
Temperate phages, the bacterial viruses able to enter in a dormant prophage state in bacterial genomes, are present in the majority of bacterial strains for which the genome sequence is available. Although these prophages are generally considered to increase their hosts’ fitness by bringing beneficial genes, studies demonstrating such effects in ecologically relevant environments are relatively limited to few bacterial species. Here, we investigated the impact of prophage carriage in the gastrointestinal tract of monoxenic mice. Combined with mathematical modelling, these experimental results provided a quantitative estimation of key parameters governing phage-bacteria interactions within this model ecosystem. We used wild-type and mutant strains of the best known host/phage pair, Escherichia coli and phage λ. Unexpectedly, λ prophage caused a significant fitness cost for its carrier, due to an induction rate 50-fold higher than in vitro, with 1 to 2% of the prophage being induced. However, when prophage carriers were in competition with isogenic phage susceptible bacteria, the prophage indirectly benefited its carrier by killing competitors: infection of susceptible bacteria led to phage lytic development in about 80% of cases. The remaining infected bacteria were lysogenized, resulting overall in the rapid lysogenization of the susceptible lineage. Moreover, our setup enabled to demonstrate that rare events of phage gene capture by homologous recombination occurred in the intestine of monoxenic mice. To our knowledge, this study constitutes the first quantitative characterization of temperate phage-bacteria interactions in a simplified gut environment. The high prophage induction rate detected reveals DNA damage-mediated SOS response in monoxenic mouse intestine. We propose that the mammalian gut, the most densely populated bacterial ecosystem on earth, might foster bacterial evolution through high temperate phage activity.  相似文献   

17.
Polylysogeny is frequently considered to be the result of an adaptive evolutionary process in which prophages confer fitness and/or virulence factors, thus making them important for evolution of both bacterial populations and infectious diseases. The Enterococcus faecalis V583 isolate belongs to the high-risk clonal complex 2 that is particularly well adapted to the hospital environment. Its genome carries 7 prophage-like elements (V583-pp1 to -pp7), one of which is ubiquitous in the species. In this study, we investigated the activity of the V583 prophages and their contribution to E. faecalis biological traits. We systematically analyzed the ability of each prophage to excise from the bacterial chromosome, to replicate and to package its DNA. We also created a set of E. faecalis isogenic strains that lack from one to all six non-ubiquitous prophages by mimicking natural excision. Our work reveals that prophages of E. faecalis V583 excise from the bacterial chromosome in the presence of a fluoroquinolone, and are able to produce active phage progeny. Intricate interactions between V583 prophages were also unveiled: i) pp7, coined EfCIV583 for E. faecalis chromosomal island of V583, hijacks capsids from helper phage 1, leading to the formation of distinct virions, and ii) pp1, pp3 and pp5 inhibit excision of pp4 and pp6. The hijacking exerted by EfCIV583 on helper phage 1 capsids is the first example of molecular piracy in Gram positive bacteria other than staphylococci. Furthermore, prophages encoding platelet-binding-like proteins were found to be involved in adhesion to human platelets, considered as a first step towards the development of infective endocarditis. Our findings reveal not only a role of E. faecalis V583 prophages in pathogenicity, but also provide an explanation for the correlation between antibiotic usage and E. faecalis success as a nosocomial pathogen, as fluoriquinolone may provoke release of prophages and promote gene dissemination among isolates.  相似文献   

18.
The majority of the bacterial genome sequences deposited in the National Center for Biotechnology Information database contain prophage sequences. Analysis of the prophages suggested that after being integrated into bacterial genomes, they undergo a complex decay process consisting of inactivating point mutations, genome rearrangements, modular exchanges, invasion by further mobile DNA elements, and massive DNA deletion. We review the technical difficulties in defining such altered prophage sequences in bacterial genomes and discuss theoretical frameworks for the phage-bacterium interaction at the genomic level. The published genome sequences from three groups of eubacteria (low- and high-G+C gram-positive bacteria and gamma-proteobacteria) were screened for prophage sequences. The prophages from Streptococcus pyogenes served as test case for theoretical predictions of the role of prophages in the evolution of pathogenic bacteria. The genomes from further human, animal, and plant pathogens, as well as commensal and free-living bacteria, were included in the analysis to see whether the same principles of prophage genomics apply for bacteria living in different ecological niches and coming from distinct phylogenetical affinities. The effect of selection pressure on the host bacterium is apparently an important force shaping the prophage genomes in low-G+C gram-positive bacteria and gamma-proteobacteria.  相似文献   

19.
20.
We show that Salmonella typhimurium harbours two fully functional prophages, Gifsy-1 and Gifsy-2, that can be induced by standard treatments or, more effectively, by exposing bacteria to hydrogen peroxide. Curing bacteria for the Gifsy-2 prophage significantly reduces Salmonella's ability to establish a systemic infection in mice. Cured strains recover their virulence properties upon relysogenization. Phage Gifsy-2 carries the sodC gene for a periplasmic [Cu,Zn]-superoxide dismutase previously implicated in the bacterial defences against killing by macrophages. The contribution of the Gifsy-1 prophage to virulence - undetectable in the presence of Gifsy-2 as prophage - becomes significant in cells that lack Gifsy-2 but carry the sodC gene integrated in the chromosome. This confirms the involvement of Gifsy-2-encoded SodC protein in Salmonella pathogenicity and suggests that the Gifsy-1 prophage carries one or more additional virulence genes that have a functional equivalent on the Gifsy-2 genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号