首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer death worldwide. As a platinum-based chemotherapeutic drug, cisplatin has been used for over 30 years in NSCLC treatment while its effects are diminished by drug resistance. Therefore, we aimed to study the potential role of UCA1 in the development of chemoresistance against cisplatin. Real-time polymerase chain reaction, western-blot analysis, and immunofluorescence were used to study the involvement of UCA1, miR-495, and NRF2 in chemoresistance against cisplatin. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to determine the effect of cisplatin on cell proliferation. Computational analysis and luciferase assay were carried out to explore the interaction among UCA1, miR-495, and NRF2. The cisplatin-R group exhibited lower levels of UCA1 and NRF2 expression but a higher level of miR-495 expression than the cisplatin-S group. The growth rate and half-maximal inhibitory concentration of cellular dipeptidyl peptidase (cisplatinum) of the cisplatin-R group were much higher than those in the cisplatin-S group. MiR-495 contained a complementary binding site of UCA1, and the luciferase activity of wild-type UCA1 was significantly reduced after the transfection of miR-495 mimics. MiR-495 directly targeted the 3′-untranslated region (3′-UTR) of NRF2, and the luciferase activity of wild-type NRF2 3′-UTR was evidently inhibited by miR-495 mimics. Finally, UCA1 and NRF2 expressions in the effective group were much lower than that in the ineffective group, along with a much higher level of miR-495 expression. We suggested for the first time that high expression of UCA1 contributed to the development of chemoresistance to cisplatin through the UCA1/miR-495/NRF2 signaling pathway.  相似文献   

2.
《FEBS letters》2014,588(9):1773-1779
Cancer cell metabolism is often characterized by a shift from an oxidative to a glycolytic bioenergetics pathway, a phenomenon known as the warburg effect. Whether the deregulation of miRNAs contributes to the warburg effect remains largely unknown. Here we show that miR-181a expression is increased and thus induces a metabolic shift in colon cancer cells. miR-181a performs this function by inhibiting the expression of PTEN, leading to an increase of phosphorylated AKT which triggers metabolic shift. The increase of lactate production induced by miR-181a results in the rapid growth of cancer cells. These results identify miR-181a as a molecular switch involved in the orchestration of the warburg effect in colon cancer cells via the PTEN/AKT pathway.  相似文献   

3.
Recent studies have shown that microRNA-106a (miR-106a) is overexpressed in gastric cancer and contributes to tumor growth. In this study, we investigated whether miR-106a mediated resistance of the gastric cancer cell line SGC7901 to the chemotherapeutic agent cisplatin (DDP). MiR-106a expression was up-regulated in the DDP resistant cell line SGC7901/DDP compared with its parental line SGC7901. Transfection of miR-106a induced DDP resist- ance in SGC7901, while suppression of miR-106a in SGC7901/DDP led to enhanced DDP cytotoxicity. Further study indicated that the mechanism of miR-106a-induced DDP resistance involved the expression of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) protein and its downstream phosphatidylinositol 3 kinase (Pl3K)/protein kinase B (AKT) pathway. This study provides a novel mechanism of DDP resistance in gastric cancer.  相似文献   

4.
Chemoresistance is a major obstacle in the neoadjuvant chemotherapy (NCT) of locally advanced breast cancer (LABC). Identification of miRNAs as prognostic biomarkers may help overcome chemoresistance of breast cancer (BC). This study aimed to evaluate the expression level of miR-1275 in plasma samples and its biological functions in the chemoresistance of BC. The expression levels of miR-1275 in plasma samples and cells were measured by RT-qPCR. CRISPR/Cas9-mediated gene editing was used to construct miR-1275 knock-out cells in MCF-7. We found that miR-1275 was significantly downregulated in plasma from patients resistant to chemotherapy and in chemoresistant BC cell lines, while patients with low levels of miR-1275 showed poor overall survival. miR-1275 knock-out promoted chemoresistance in BC cells by increasing the properties of cancer stem cells (CSCs). Mechanistically, we identified that MDK was determined to be direct downstream protein of miR-1275 which initiated PI3K/Akt signaling in breast cancer cells. We demonstrated that the high expression level of miR-1275 in plasma predicted better response to NCT. The reduction of miR-1275 promoted BC cells chemoresistance by increasing CSCs properties via targeting MDK/AKT axis. The potential of miR-1275 as a new prognostic biomarker and therapeutic target of BC patients was identified.  相似文献   

5.
探讨非小细胞肺癌中PTEN、p57/Kip2和CK19的表达情况和临床意义。选取58例非小细胞肺癌手术切除标本,采用SP法进行免疫组织化学染色。PTEN、p57/Kip2和CK19的阳性表达率分别为44.8%、56.9%和98.3%。PTEN和p57/Kip2在低分化肿瘤中表达显著降低或缺失,在腺癌中的表达强度高于鳞癌;CK19几乎在所有的肺癌组织中均表达,且在腺癌中的表达强度高于鳞癌。PTEN和p57/Kip2的低表达参与肿瘤的生长分化和进展,并提示预后不良。  相似文献   

6.
In this study, we aimed to investigate the role of circORC2 in modulating miR-19a and its downstream signalling during the pathogenesis of STC. In this study, three groups of patients, that is healthy control (HC) group, normal transit constipation (NTC) group (N = 42) and slow transit constipation (STC) group, were, respectively, recruited. RT-PCR and Western blot analysis were exploited to investigate the changes in the expression levels of miR-19a and circORC2 in these patients, so as to establish a circORC2/miR-19a signalling pathway. The basic information of the patients showed no significant differences among different patient groups. Compared with the HC group, concentrations of neurotensin (NST) and motilin (MLN) were both significantly reduced in the NTC and STC groups, especially in the STC group. Also, miR-19a level was highest, whereas circORC2 level was lowest in the STC group. Furthermore, circORC2 was validated to sponge the expression of miR-19a, and the transfection of circORC2 reduced the expression of miR-19a. Meanwhile, MLN and NST mRNAs were both targeted by miR-19a, and the transfection of circORC2 dramatically up-regulated the expression of MLN and NST. On the contrary, the transfection of circORC2 siRNA into SMCs and VSMCs exhibited the opposite effect of circORC2. Collectively, the results of this study established a regulatory relationship among circORC2, miR-19a and neurotensin/motilin, which indicated that the overexpression of circORC2 could up-regulate the levels of neurotensin and motilin, thus exerting a beneficial effect during the treatment of STC.  相似文献   

7.
Circ-Foxo3 is a circRNA encoded by the human FOXO3 gene and works as a sponge for potential microRNAs (miRNAs) to regulate cancer progression. However, the role of circ-Foxo3 in esophageal squamous cell cancer (ESCC) is not clear. In this study, circ-Foxo3 was lowly expressed in cell lines and ESCC tissues. Meanwhile, overexpression of circ-Foxo3 inhibited cell growth, migration, and invasion, whether in vivo or in vitro. Mechanically, we found a potential miRNA target, miR-23a, which negatively correlated with circ-Foxo3 in ESCC. Then, a luciferase assay confirmed the relationship between the circ-Foxo3 and miRNA. Moreover, circ-Foxo3 upregulation of PTEN occurred through “sponging” miR-23a. Taken together, these results indicated that the circ-Foxo3/miR-23a/PTEN pathway was critical for inhibiting the ESCC progression. This may provide a promising target for treat ESCC.  相似文献   

8.
Fibroblast growth factor receptor‐like 1 (FGFRL1), a member of the FGFR family, has been demonstrated to play important roles in various cancers. However, the role of FGFRL1 in small‐cell lung cancer (SCLC) remains unclear. Our study aimed to investigate the role of FGFRL1 in chemoresistance of SCLC and elucidate the possible molecular mechanism. We found that FGFRL1 levels are significantly up‐regulated in multidrug‐resistant SCLC cells (H69AR and H446DDP) compared with the sensitive parental cells (H69 and H446). In addition, clinical samples showed that FGFRL1 was overexpressed in SCLC tissues, and high FGFRL1 expression was associated with the clinical stage, chemotherapy response and survival time of SCLC patients. Knockdown of FGFRL1 in chemoresistant SCLC cells increased chemosensitivity by increasing cell apoptosis and cell cycle arrest, whereas overexpression of FGFRL1 in chemosensitive SCLC cells produced the opposite results. Mechanistic investigations showed that FGFRL1 interacts with ENO1, and FGFRL1 was found to regulate the expression of ENO1 and its downstream signalling pathway (the PI3K/Akt pathway) in SCLC cells. In brief, our study demonstrated that FGFRL1 modulates chemoresistance of SCLC by regulating the ENO1‐PI3K/Akt pathway. FGFRL1 may be a predictor and a potential therapeutic target for chemoresistance in SCLC.  相似文献   

9.
The aim of this study was to explain the effect and mechanisms of miRNA-30-3p in myocardial ischemia-induced cell apoptosis in vitro and in vivo studies. In the cell experiment, the H9C2 cells were divided into the normal control (NC), and the model, miRNA, and miRNA + phosphatidylinositol 3-kinase (PI3K) inhibitor groups. The cell survival rates of the different groups were measured with the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay kit; the lactate dehydrogenase (LDH), malondialdehyde (MDA) content, and superoxidedimutase (SOD) activity in the bathing medium were assayed for the evaluation of myocardial cell injury. The cell apoptosis rate of different groups was measured with flow cytometry analysis. The relative protein expressions of different cell groups were evaluated by Western blot analysis. In the vivo study, the Sprague-Dawley rats were divided into four groups: the NC group, the model group, miRNA group, and the (miRNA + PI3K inhibitor) group. The pathological observations, cell apoptosis, LDH, SOD, MDA, and relative protein expressions were evaluated with hematoxylin and eosin, enzyme-linked immunosorbent assay, terminal deoxynucleotide transferase dUTP nick-end labeling or immunohistochemical methods. The results show that miRNA-30-3p had the effect of improving cell apoptosis induced by myocardial ischemia in vitro and in vivo studies by the regulation of the PTEN/PI3K/AKT pathway.  相似文献   

10.
TSPYL5, encoding testis-specific Y-like protein, has been postulated to be a tumor suppressor gene, and its hypermethylation is often associated with human disease, especially cancer. In this study, we report that the TSPYL5 gene was less methylated (30%) in A549 lung adenocarcinoma cells, which are relatively resistant to γ-radiation, than in H460 lung cancer cells, in which the TSPYL5 gene was hypermethylated (95%); thus, the expression level of TSPYL5 is much higher in A549 cells than in H460 cells. We showed that TSPYL5 suppression with silencing RNA in A549 cells up-regulated cellular PTEN, followed by down-regulation of AKT activation. Therefore, blockage of TSPYL5 sensitized A549 cells to cytotoxic agents such as γ-radiation. In addition, TSPYL5 suppression also showed an increased level of p21WAF1/Cip1 and subsequently induced inhibition of cell growth in A549 cells. The overexpression of TSPYL5 in H460 cells showed the opposite effects. This study provides the first demonstration that TSPYL5 modulates cell growth and sensitization of cells to the detrimental effects of damaging agents via regulation of p21WAF1/Cip1 and PTEN/AKT pathway.  相似文献   

11.
目的:检测mi R-19b与mi R-20a在非小细胞肺癌(NSCLC)组织中的表达,探讨两者与肺癌临床病理的关系。方法:选择我院NSCLC肺癌患者50例,使用Real-time RT-PCR法对其癌组织及癌旁正常组织中mi R-19b和mi R-20a的含量进行检测,并利用2(-△△CT)法处理结果,分析与临床病理资料的关系。结果:相对于内参U6,mi R-19b基因在NSCLC组织中的表达量明显低于癌旁正常组织,而mi R-20a基因在NSCLC组织中的表达量明显高于癌旁正常组织,差异具有统计学意义(P0.05);在NSCLC组织标本中,mi R-19b基因表达量在临床分期I-II的标本中明显高于临床分期III,而mi R-20a基因表达量在临床分期I-II的标本中明显低于临床分期III,差异均就有统计学意义(P0.05);mi R-19b基因表达量在肿瘤病理低分化组织中明显低于肿瘤病理高分化组织,而mi R-20a基因表达量在肿瘤病理低分化组织中明显高于肿瘤病理高分化组织,差异均具有统计学意义(均P0.05)。结论:mi R-19b低表达和mi R-20a高表达与NSCLC的临床分期、病理分级具有密切关系,早期检测有助于NSCLC诊断和治疗。  相似文献   

12.
Cisplatin resistance is one of the main limitations in the treatment of ovarian cancer, and its mechanism has not been fully understood. The objectives of this study were to determine the role of miR-221/222 and its underlying mechanism in chemoresistance of ovarian cancer. We demonstrated that miR-221/222 expression levels were higher in A2780/CP cells compared with A2780 S cells. An in vitro cell viability assay showed that downregulation of miR-221/222 sensitized A2780/CP cells to cisplatin-induced cytotoxicity. Moreover, we found that knockdown of miR-221/222 by its specific inhibitors promoted the cisplatin-induced apoptosis in A2780/CP cells. Using bioinformatic analysis and luciferase reporter assay, miR-221/222 were found to directly target PTEN. Moreover, knockdown of miR-221/222 in A2780/CP cells significantly upregulated PTEN and downregulated PI3KCA and p-Akt expression. In conclusion, our results demonstrated that miR-221/222 induced cisplatin resistance by targeting PTEN mediated PI3K/Akt pathway in A2780/CP cells, suggesting that miR-221/222/PTEN/PI3K/Akt may be a promising prognostic and therapeutic target to overcome cisplatin resistance and treat ovarian cancer in the future.  相似文献   

13.
摘要 目的:探究miR-19靶向PTEN并介导HMGB1影响小鼠动脉粥样硬化进程的机制研究。方法:SPF级C57BL/6J ApoE-/-雄性小鼠根据研究目的将实验小鼠分为对照组、AS模型组和miR-19抑制剂组。通过RT-PCR分析小鼠主动脉组织中miR-19的mRNA表达。通过蛋白印迹分析小鼠主动脉PTEN、HMGB1和AKT的蛋白表达。通过荧光素酶活性检测miR-19a与PTEN的靶向关系。通过组织学和红油O染色分析小鼠胸腹主动脉和主动脉窦中的AS斑块面积。通过RT-PCR分析小鼠主动脉主动脉弓内膜中促炎细胞因子和趋化因子的mRNA表达。通过蛋白印迹分析主动脉弓内膜中ICAM-1和VCAM-1的蛋白表达。结果:AS模型组miR-19mRNA表达较对照组升高(P<0.05),miR-19抑制剂组miR-19mRNA表达较AS模型组降低(P<0.05)。AS模型组PTEN蛋白表达较对照组降低,HMGB1和AKT蛋白表达较对照组升高(P<0.05),miR-19抑制剂组PTEN蛋白表达较AS模型组升高,miR-19抑制剂组HMGB1和AKT蛋白表达较AS模型组降低(P<0.05)。AS模型组主动脉和主动脉窦的斑块面积较对照组增加(P<0.05),miR-19抑制剂组主动脉和主动脉窦的斑块面积较AS模型组减少(P<0.05)。AS模型组TNF-α、IL-β、IL-6和CXCL2的mRNA表达较对照组升高(P<0.05),miR-19抑制剂组TNF-α、IL-6、IL-β和CXCL2的mRNA表达较AS模型降低(P<0.05)。AS模型组ICAM-1和VCAM-1的蛋白表达较对照组升高(P<0.05),miR-19抑制剂组ICAM-1和VCAM-1的蛋白表达较AS模型组降低(P<0.05)。结论:miR-19通过靶向调控PTEN表达激活HMGB1/PI3K/Akt信号通路,这可能会促进VSMCs的异常增殖、迁移和炎症反应,有助于AS的进展。  相似文献   

14.
Lung cancer is one of the most common malignant diseases, which ranked first in both men and women malignancies worldwide. The survival rate of non-small-cell lung cancer (NSCLC) has been limited with distant metastasis and shortage of effective chemotherapeutics in recent years. Thus, novel therapeutic strategies for NSCLC are urgently explored. Here, we showed that inhibition of H19 effectively inhibited the progression of NSCLC. Moreover, down-regulation of H19 treatment significantly enhanced the levels of PTEN and PDCD4, while suppressed the expressions of NFIB in NSCLC. Furthermore, down-regulation of H19 combined with Gefitinib treatment significantly increased the levels of PTEN and PDCD4, while decreased the expression levels of NFIB. Moreover, the results showed that Gefitinib treatment significantly reduced the shH19-mediated miR-21 expression levels. Our results showed that down-regulation of H19 combined with Gefitinib administration significantly improved the effect of shH19 treatment alone on the progression of NSCLC, which was involved in the activation of PTEN signalling pathway in NSCLC in vivo. Therefore, these findings might indicate a novel molecular mechanism, which could provide a new potential combination of therapeutic method in NSCLC.  相似文献   

15.
Ovarian cancer is the deadliest of gynecologic cancers, largely due to the development of drug resistance in chemotherapy. Prostasin may have an essential role in the oncogenesis. In this study, we show that prostasin is decreased in an ovarian cancer drug-resistant cell line and in ovarian cancer patients with high levels of excision repair cross-complementing 1, a marker for chemoresistance. Our cell cultural model investigation demonstrates prostasin has important roles in the development of drug resistance and cancer cell survival. Forced overexpression of prostasin in ovarian cancer cells greatly induces cell death (resulting in 99% cell death in a drug-resistant cell line and 100% cell death in other tested cell lines). In addition, the surviving cells grow at a much lower rate compared with non-overexpressed cells. In vivo studies indicate that forced overexpression of prostasin in drug-resistant cells greatly inhibits the growth of tumors and may partially reverse drug resistance. Our investigation of the molecular mechanisms suggests that prostasin may repress cancer cells and/or contribute to chemoresistance by modulating the CASP/P21-activated protein kinase (PAK2)-p34 pathway, and thereafter PAK2-p34/JNK/c-jun and PAK2-p34/mlck/actin signaling pathways. Thus, we introduce prostain as a potential target for treating/repressing some ovarian tumors and have begun to identify their relevant molecular targets in specific signaling pathways.  相似文献   

16.
17.
It is well known that the acquisition of chemoresistance is a major obstacle for the effective treatment of human cancers. It is reported that microRNAs (miRNAs) are implicated in chemotherapy resistance of various malignancies. miR-10b was previously proved as an oncogene in multiple malignancies, including esophageal cancer. However, its biological significance in regulating cisplatin (DDP) resistance in esophageal cancer is still elusive. Here, we observed that miR-10b expression was upregulated and peroxisome proliferator-activated receptor-γ (PPARγ) expression was downregulated in esophageal cancer tumor tissues and cells. PPARγ was proved as a functional target of miR-10b. Moreover, suppression of miR-10b enhanced the chemosensitivity of esophageal cancer cells to DDP in vitro and in vivo. In addition, PPARγ-mediated DDP sensitivity was weakened by miR-10b overexpression. Furthermore, miR-10b-activated AKT/mTOR/p70S6K signaling pathway through targeting PPARγ. Inactivation of AKT/mTOR/p70S6K by AKT inhibitor (GSK690693) attenuated miR-10b-induced DDP resistance in esophageal cancer cells. Taken together these observation, miRNA-10b-mediated PPARγ inhibition enhanced DDP resistance by activating the AKT/mTOR/P70S6K signaling in esophageal cancer, suggesting a potential target to improve therapeutic response of patients with esophageal cancer to DDP.  相似文献   

18.
人类miR-491 (has-miR-491)是一段长度为84 bp的微小RNA,可以通过与靶mRNA的3'端非翻译区(3'-untranslated region,3'-UTR)结合,降解靶mRNA或抑制其翻译,在转录后水平对肿瘤细胞基因表达进行调控,影响肿瘤发展进程.非小细胞肺癌(non-small lang ca...  相似文献   

19.
Lung cancer is the leading cause of death in individuals with malignant disease. Non‐small‐cell lung cancer (NSCLC) is the most common type of lung cancer, and chemotherapy drugs such as cisplatin are the most widely used treatment for this disease. Baicalein is a purified flavonoid compound that has been reported to inhibit cancer cell growth and metastasis and increase sensitization to chemotherapeutic drugs via different pathways. Therefore, we assessed the effects of baicalein on the proliferation, apoptosis and cisplatin sensitivity in the NSCLC A549 and H460 cell lines and determined the pathways through which baicalein exerts its effects. Baicalein was slightly toxic to normal human bronchial NHBE cells but inhibited growth, induced apoptosis and increased cisplatin sensitivity in A549 and H460 cells. Baicalein down‐regulated miR‐424‐3p, up‐regulated PTEN expression and down‐regulated expression of PI3K and p‐Akt in A549 and H460 cells. Dual‐luciferase reporter assay demonstrated that PTEN is a target gene of miR‐424‐3p, and overexpression of miR‐424‐3p or silencing of PTEN partially attenuated the effects of baicalein on A549 and H460 cells. Taken together, we concluded that baicalein inhibits cell growth and increases cisplatin sensitivity to A549 and H460 cells via down‐regulation of miR‐424‐3p and targeting the PTEN/PI3K/Akt pathway.  相似文献   

20.
Ring1 and YY1 binding protein (RYBP), a new member of the polycomb group protein family, has been reported to play an important role in various biological processes. Recently, more and more studies have demonstrated an implication of RYBP in cancer development. However, the specific role of RYBP in anaplastic thyroid cancer (ATC) remains unknown. In this study, we investigated for the first time the expression pattern and biological functions of RYBP in ATC. We showed that RYBP was lowly expressed in ATC tissues and cell lines. We also found that overexpression of RYBP inhibited ATC cell proliferation, invasion, and cisplatin resistance. Furthermore, we observed that upregulation of RYBP decreased the phosphorylation of EGFR and ERK1/2 in ATC cells. Taken together, our data indicated that RYBP might be considered as a promising therapeutic target for the treatment of ATC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号