首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20–30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20–30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development.  相似文献   

2.
Germination of barley is accompanied by changes in water-soluble seed proteins. 2-DE was used to describe spatio-temporal proteome differences in dissected seed tissues associated with germination and the subsequent radicle elongation. Protein identification by MS enabled assignment of proteins and functions to the seed embryo, aleurone, and endosperm. Abundance in 2-DE patterns was monitored for 48 different proteins appearing in 79 gel spots at 8 time-points up to 72 h post imbibition (PI). In embryo, a beta-type proteasome subunit and a heat shock protein 70 fragment were among the earliest proteins to appear (at 4 h PI). Other early changes were observed that affected spots containing desiccation stress-associated late embryogenesis abundant and abscisic acid (ABA)-induced proteins. From 12 h PI proteins characteristic for desiccation stress disappeared rapidly, as did a putative embryonic protein and an ABA-induced protein, suggesting that these proteins are also involved in desiccation stress. Several redox-related proteins differed in spatio-temporal patterns at the end of germination and onset of radicle elongation. Notably, ascorbate peroxidase that was observed only in the embryo, increased in abundance at 36 h PI. The surprisingly early changes seen in the protein profiles already 4 h after imbibition indicate that germination is programmed during seed maturation.  相似文献   

3.
4.
Seed filling is a dynamic, temporally regulated phase of seed development that determines the composition of storage reserves in mature seeds. Although the metabolic pathways responsible for storage reserve synthesis such as carbohydrates, oils, and proteins are known, little is known about their regulation. Protein phosphorylation is a ubiquitous form of regulation that influences many aspects of dynamic cellular behavior in plant biology. Here a systematic study has been conducted on five sequential stages (2, 3, 4, 5, and 6 weeks after flowering) of seed development in oilseed rape (Brassica napus L. Reston) to survey the presence and dynamics of phosphoproteins. High resolution two-dimensional gel electrophoresis in combination with a phosphoprotein-specific Pro-Q Diamond phosphoprotein fluorescence stain revealed approximately 300 phosphoprotein spots. Of these, quantitative expression profiles for 234 high quality spots were established, and hierarchical cluster analyses revealed the occurrence of six principal expression trends during seed filling. The identity of 103 spots was determined using LC-MS/MS. The identified spots represented 70 non-redundant phosphoproteins belonging to 10 major functional categories including energy, metabolism, protein destination, and signal transduction. Furthermore phosphorylation within 16 non-redundant phosphoproteins was verified by mapping the phosphorylation sites by LC-MS/MS. Although one of these sites was postulated previously, the remaining sites have not yet been reported in plants. Phosphoprotein data were assembled into a web database. Together this study provides evidence for the presence of a large number of functionally diverse phosphoproteins, including global regulatory factors like 14-3-3 proteins, within developing B. napus seed.  相似文献   

5.
Maltman DJ  Gadd SM  Simon WJ  Slabas AR 《Proteomics》2007,7(9):1513-1528
The endoplasmic reticulum is a major compartment of storage protein and lipid biosynthesis. Maximal synthesis of these storage compounds occurs during seed development with breakdown occurring during germination. In this study, we have isolated four independent preparations of ER from both developing and germinating seeds of castor bean (Ricinus communis) and used 2-D DIGE, and a combination of PMF and MS/MS sequencing, to quantify and identify differences in protein complement at both stages. Ninety protein spots in the developing seeds are up-regulated and 19 individual proteins were identified, the majority of these are intermediates of seed storage synthesis and protein folding. The detection of these transitory storage proteins in the ER is discussed in terms of protein trafficking and processing. In germinating seed ER 15 spots are elevated, 5 of which were identified, amongst them was malate synthetase which is a component of the glyoxysome which is believed to originate from the ER. Notably no proteins involved in complex lipid biosynthesis were identified in the urea soluble ER fraction indicating that they are probably all integral membrane proteins.  相似文献   

6.
Grain filling and grain development are essential biological processes in the plant’s life cycle, eventually contributing to the final seed yield and quality in all cereal crops. Studies of how the different wheat (Triticum aestivum L.) grain components contribute to the overall development of the seed are very scarce. We performed a proteomics and metabolomics analysis in four different developing components of the wheat grain (seed coat, embryo, endosperm, and cavity fluid) to characterize molecular processes during early and late grain development. In-gel shotgun proteomics analysis at 12, 15, 20, and 26 days after anthesis (DAA) revealed 15 484 identified and quantified proteins, out of which 410 differentially expressed proteins were identified in the seed coat, 815 in the embryo, 372 in the endosperm, and 492 in the cavity fluid. The abundance of selected protein candidates revealed spatially and temporally resolved protein functions associated with development and grain filling. Multiple wheat protein isoforms involved in starch synthesis such as sucrose synthases, starch phosphorylase, granule-bound and soluble starch synthase, pyruvate phosphate dikinase, 14-3-3 proteins as well as sugar precursors undergo a major tissue-dependent change in abundance during wheat grain development suggesting an intimate interplay of starch biosynthesis control. Different isoforms of the protein disulfide isomerase family as well as glutamine levels, both involved in the glutenin macropolymer pattern, showed distinct spatial and temporal abundance, revealing their specific role as indicators of wheat gluten quality. Proteins binned into the functional category of cell growth/division and protein synthesis/degradation were more abundant in the early stages (12 and 15 DAA). At the metabolome level all tissues and especially the cavity fluid showed highly distinct metabolite profiles. The tissue-specific data are integrated with biochemical networks to generate a comprehensive map of molecular processes during grain filling and developmental processes.  相似文献   

7.
Maize seeds were used to identify the key embryo proteins involved in desiccation tolerance during development and germination. Immature maize embryos (28N) during development and mature embryos imbibed for 72 h (72HN) are desiccation sensitive. Mature maize embryos (52N) during development are desiccation tolerant. Thiobarbituric acid reactive substance and hydrogen peroxide contents decreased and increased with acquisition and loss of desiccation tolerance, respectively. A total of 111 protein spots changed significantly (1.5 fold increase/decrease) in desiccation-tolerant and -sensitive embryos before (28N, 52N and 72HN) and after (28D, 52D and 72HD) dehydration. Nine pre-dominantly proteins, 17.4 kDa Class I heat shock protein 3, late embryogenesis abundant protein EMB564, outer membrane protein, globulin 2, TPA:putative cystatin, NBS-LRR resistance-like protein RGC456, stress responsive protein, major allergen Bet v 1.01C and proteasome subunit alpha type 1, accumulated during embryo maturation, decreased during germination and increased in desiccation-tolerant embryos during desiccation. Two proteins, Rhd6-like 2 and low-molecular-weight heat shock protein precursor, showed the inverse pattern. We infer that these eleven proteins are involved in seed desiccation tolerance. We conclude that desiccation-tolerant embryos make more economical use of their resources to accumulate protective molecules and antioxidant systems to deal with maturation drying and desiccation treatment.  相似文献   

8.
9.
Using high throughput tandem mass tag (TMT) based tagging technique, we identified 4172 proteins in three developmental stages: early, mid, and late seed filling. We mapped the identified proteins to metabolic pathways associated with seed filling. The elevated abundance of several kinases was observed from the early to mid-stages of seed filling, indicating that protein phosphorylation was a significant event during this period. The early to late seed filling stages were characterized by an increased abundance of proteins associated with the cell wall, oil, and vacuolar-related processes. Among the seed storage proteins, 7S (β-subunit) and 11S (Gy3, Gy4, Gy5) steadily increased in abundance during early to late stages of seed filling, whereas 2S albumin exhibited a decrease in abundance during the same period. An increased abundance of proteases, senescence-associated proteins, and oil synthesis proteins was observed from the mid to late seed filling stages. The mid to late stages of seed filling was also characterized by a lower abundance of transferases, transporters, Kunitz family trypsin, and protease inhibitors. Two enzymes associated with methionine synthesis exhibited lower abundance from early to late stages. This study unveiled several essential enzymes/proteins related to amino acid and protein synthesis and their accumulation during seed development. All data can be accessed through this link: https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=38784ecbd0854bb3801afc0d89056f84 . (Accession MSV000087577)  相似文献   

10.
《Journal of Proteomics》2010,73(2):279-296
Comparative proteomics analysis offers a new approach to identify differential proteins among different wheat genotypes and developmental stages. In this study, the non-prolamin expression profiles during grain development of two common or bread wheat cultivars (Triticum aestivum L.), Jing 411 and Sunstate, with different quality properties were analyzed using two-dimensional difference gel electrophoresis (2-D DIGE). Five grain developmental stages during the post-anthesis period were sampled corresponding to the cumulative averages of daily temperatures (°C: 156 °C, 250 °C, 354 °C, 447 °C and 749.5 °C). More than 400 differential protein spots detected at one or more of the developmental stages of the two cultivars were monitored, among which 230 proteins were identified by MS. Of the identified proteins, more than 85% were enzymes possessing different physiological functions. A total of 36 differential proteins were characterized between the two varieties, which are likely to be related to wheat quality attributes. About one quarter of the proteins identified expressed in multiple spots with different pIs and molecular masses, implying certain post-translational modifications (PTMs) of proteins such as phosphorylations and glycosylations. The results provide new insights into biochemical mechanisms for grain development and quality.  相似文献   

11.
Sheoran IS  Olson DJ  Ross AR  Sawhney VK 《Proteomics》2005,5(14):3752-3764
Proteome analysis of embryo and endosperm tissues from germinating tomato seed was conducted using 1-DE, 2-DE, and MS. Mobilization of the most abundant proteins, which showed similar profiles in the two tissues, occurred first in the endosperm. CBB R-250 staining of 2-DE gels revealed 352 and 369 major protein spots in the embryo and endosperm, respectively, at 0 h. Of these, 75 major spots were selected, excised, in-gel digested with trypsin, and analyzed by MALDI-TOF-MS and/or LC-ESI-Q/TOF-MS/MS. Peptide MS and MS/MS data were searched against publicly available protein and EST databases, and 47 proteins identified. Embryo-specific proteins included a BAC19.13 homologue, whereas four proteins specific to the endosperm were tomato mosaic virus coat proteins related to defense mechanisms. The most abundant proteins both in the embryo and endosperm were seed storage proteins, i.e., legumins (11 spots), vicilins (11 spots), albumin (2 spots). Housekeeping enzymes, actin-binding profilin, defense-related protein kinases, nonspecific lipid transfer protein, and proteins involved in general metabolism were also identified. The roles of some of the proteins identified in the embryo and endosperm are discussed in relation to seed germination in tomato.  相似文献   

12.
Seed development is a complex process governed by highly coordinated changes in the expression of a large protein set. DIGE (Difference Gel Electrophoresis)-based proteomics was used to study developing Chinese fir seeds. 153 spots were obtained by using the analysis of DeCyder software (v. 6.5). Cluster analysis showed that they could be joined into three main groups. Eleven spots, more actively expressed at early cotyledonary stage of developing seeds, were identified by LC/MS/MS (tandem MS). Ten spots were identified by searching NCBInr or EST databases. They included two legumin-like storage proteins, LEA protein, small heat-shock protein, PR10-1.13, a protein similar to eukaryotic translation initiation factor, a protein similar to maternal effect embryo arrest 51, ORF115, a protein similar to monodehydroascorbate reductase, and unknown proteins. The potential function of these proteins during the precotyledonary stage of seed development was discussed.  相似文献   

13.
14.
15.
Profiles of total seed proteins isolated from mature seeds of four peanut cultivars, New Mexico Valencia C (NM Valencia C), Tamspan 90, Georgia Green, and NC-7, were studied using two-dimensional gel electrophoresis coupled with nano-electrospray ionization liquid chromatography tandem mass spectrometry (nESI-LC–MS/MS). Two-dimensional gels stained with silver nitrate revealed a total of 457, 516, 556, and 530 protein spots in NM Valencia C, Tamspan 90, Georgia Green, and NC-7, respectively. Twenty abundant protein spots showing differences in relative abundance among these cultivars were analyzed by nESI-LC–MS/MS, resulting in identification of 14 non-redundant proteins. The majority of these proteins belonged to the globulin fraction consisting of arachin (glycinin and Arah3/4) and conarachin seed storage proteins as well as other allergen proteins. The expression of some of these identified protein spots was cultivar-specific. For example, allergen Arah3/Arah4 and conarachin protein spots were only detected in Tamspan 90 and NC-7, whereas the Gly1 protein spot was detected only in NM Valencia C and NC-7. Moreover, a galactose-binding lectin protein spot with anti-nutritive properties was only present in Tamspan 90. Other proteins showing differences in relative abundance among the four cultivars included 13-lipoxygenase, fructose-biphosphate aldolase, and glyceraldehyde 3-phosphate dehydrogenase. Together, these results suggest that identified proteins might serve as potential markers for cultivar differentiation and may be associated with underlying sensory and nutritional traits of peanut cultivars.  相似文献   

16.
Tay TL  Lin Q  Seow TK  Tan KH  Hew CL  Gong Z 《Proteomics》2006,6(10):3176-3188
In the present study, profiles of protein expression were examined during early development of zebrafish, an increasingly popular experimental model in vertebrate development and human diseases. By 2-DE, an initial increase in protein spots from 6 h post-fertilization (hpf) to 8-10 hpf was observed. There was no dramatic change in protein profiles up to 18 hpf, but significant changes occurred in subsequent stages. Interestingly, 49% of the proteins detected at 6 hpf remained detectable by 1 week of age. To map the protein expression patterns in 2-D gels, MALDI-TOF/TOF MS was employed to identify selected protein spots from early embryos. 108 protein spots were found to match known proteins and they were derived from 55 distinct genes. Interestingly, 11 (20%) of them produced multiple protein isoforms or distinct cleavage products. Although deyolked embryos were used in the analysis, a large number of vitellogenin derivatives remained prominently present in the embryos. Other than these, most of the identified proteins are cytosolic, cytoskeletal and nuclear proteins, which are involved in diversified functions such as metabolism, cytoskeleton, translation, protein degradation, etc. Some of the proteins with interesting temporal expression profiles during development are further discussed.  相似文献   

17.
18.
Summary The ribosomal proteins from two larval and two pupal stages, within 24 hours before and after pupation, respectively, and adult flies were extracted and compared by two-dimensional polyacrylamide gel electrophoresis. This technique resolved 53 larval, 50 pupal and 52 adult ribosomal proteins, forming a complex pattern. Some proteins were found only in one stage or the other. At present it is not possible, however, to classify these proteins as stage-specific. Some spots showed considerable increase in their staining intensities from one stage to the other, whereas, at the same time, other spots faded. In the ribosomal protein pattern of adult flies 3 proteins showed altered electrophoretic mobilities as compared to earlier developmental stages.Hormones involved in insect development, epigenetic control and non-ribosomal proteins are discussed as possible causes of the variations in the ribosomal protein composition.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号