首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The susceptibility of the chloroplastic enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase to proteolysis by trypsin, chymotrypsin, proteinase K, and papain is enhanced by oxidative treatments including spontaneous oxidation of cysteines. Proteinases exhibit a high specificity for the oxidized inactive form of the carboxylase, cleaving its large subunit. Treatment of the inactive enzyme with dithiothreitol results in partial recovery of both carboxylase activity and resistance to proteolysis. This behavior may explain the specific degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase that occurs in vivo during leaf senescence.  相似文献   

2.
The degradation of Ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) in wheat (Triticum aestivum L. cv. Yangmai 158) leaves during dark-induced senescence was studied. An in vivo degradation product of Rubisco large subunit (LSU) with molecular weight of 50 kD was detected by SDS-PAGE and immunoblotting with antibody against tobacco Rubisco. This fragment could also be detected in natural senescence. The result also suggested that the Rubisco holoenzyme had not dissociated when LSU hydrolyzed from 53 kD to 50 kD. And LSU could be fragmented to 50 kD at 30-35 ℃ and at pH 7.5 in crude enzyme extracts of wheat leaves dark-induced for 48 h, which suggested that maybe LSU was degraded to 50 kD by an unknown protease in chloroplast.  相似文献   

3.
Previous work has indicated that the turnover of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1. 39) may be controlled by the redox state of certain cysteine residues. To test this hypothesis, directed mutagenesis and chloroplast transformation were employed to create a C172S substitution in the Rubisco large subunit of the green alga Chlamydomonas reinhardtii. The C172S mutant strain was not substantially different from the wild type with respect to growth rate, and the purified mutant enzyme had a normal circular dichroism spectrum. However, the mutant enzyme was inactivated faster than the wild-type enzyme at 40 and 50 degrees C. In contrast, C172S mutant Rubisco was more resistant to sodium arsenite, which reacts with vicinal dithiols. The effect of arsenite may be directed to the cysteine 172/192 pair that is present in the wild-type enzyme, but absent in the mutant enzyme. The mutant enzyme was also more resistant to proteinase K in vitro at low redox potential. Furthermore, oxidative (hydrogen peroxide) or osmotic (mannitol) stress-induced degradation of Rubisco in vivo was delayed in C172S mutant cells relative to wild-type cells. Thus, cysteine residues could play a role in regulating the degradation of Rubisco under in vivo stress conditions.  相似文献   

4.
Immunocytochemical electron-microscopic observation indicated that ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) and/or its degradation products are localized in small spherical bodies having a diameter of 0.4-1.2 micro m in naturally senescing leaves of wheat (Triticum aestivum L.). These Rubisco-containing bodies (RCBs) were found in the cytoplasm and in the vacuole. RCBs contained another stromal protein, chloroplastic glutamine synthetase, but not thylakoid proteins. Ultrastructural analysis suggested that RCBs had double membranes, which seemed to be derived from the chloroplast envelope, and that RCBs were further surrounded by the other membrane structures in the cytoplasm. The appearance of RCBs was the most remarkable when the amount of Rubisco started to decrease at the early phase of leaf senescence. These results suggest that RCBs might be involved in the degradation process of Rubisco outside of chloroplasts during leaf senescence.  相似文献   

5.
Leaf senescence and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBP carboxylase, EC 4.1.1.39) degradation in orange [ Citrus sinensis (L.) Osbeck cv. Washington Navel] explants have been investigated. Explants consisted of a segment of stem (ca 15 cm) and 5 mature leaves. In vitro RuBP carboxylase degradation was determined by culturing the explants in water for different periods of time (3 days usually) and quantifying the two RuBP carboxylase subunits in the extracts following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In vitro RuBP carboxylase degradation was estimated by autodigestion of leaf extracts and SDS-PAGE. The extent of in vivo RuBP carboxylase degradation in explants cultured under 16 h light/8 h dark photoperiod varied throughout the year and showed a cyclic behaviour correlated with the growth cycle of Citrus. The highest proteolytic activity both in vivo and in vitro was found in explants made from April to August coinciding with the maximum vegetative growth period of the tree.
Leaf senescence and abscission could be retarded significantly at any time of the year by maintaining the explants continuously in the dark. Treatment of the explants in the dark with a continuous flow of ethylene enhanced both leaf abscission and rate of RuBP carboxylase degradation, proportionally to ethylene concentration (0.1-0.6 ppm). Ethylene-induced senescence of Citrus leaf explants in the dark appears to be a convenient model system to study the regulation of the proteolytic degradation of RuBP carboxylase.  相似文献   

6.
The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase fromEuglena gracilis decays steadily when exposed to agents that induce oxidative modification of cysteine residues (Cu2+, benzofuroxan, disulfides, arsenite, oxidized ascorbate). Inactivation takes place with a concomitant loss of cysteine sulfhydryl groups and dimerization of large subunits of the enzyme. 40% activity loss induced by the vicinal thiol-reagent arsenite is caused by modification of a few neighbor residues while the almost complete inactivation achieved with disulfides is due to extensive oxidation leading to formation of mixed disulfides with critical cysteines of the protein. In most cases oxidative inactivation is also accompanied by an increased sensitivity to proteolysis by trypsin, chymotrypsin or proteinase K. Both enzymatic activity and resistance to proteolysis can be restored through treatment with several thiols (cysteamine, cysteine, dithiothreitol and, more slowly, reduced glutathione). Redox effectors which are thought to regulate the chloroplast activity (NADPH, ferredoxin and thioredoxin) do not reactivate the oxidized enzyme. When ribulose-1,5-bisphoshate carboxylase/oxygenase is incubated with cystamine/cysteamine mixtures having different disulfide/thiol ratio (r), inactivation takes place around r=1.5 while proteolytic sensitization occurs under more oxidative conditions (r=4). It is suggested that oxidative modification may happen in vivo under exceptional circumstances, such as senescence, bleaching or different kinds of stress, leading to enzyme inactivation and triggering the selective degradation of the carboxylase that has been repeatedly observed during these processes.  相似文献   

7.
Barley ( Hordeum vulgare L. cv. Salome) primary leaf segments responded to the application of a putative plant growth regulator, ± jasmonic acid methylester (JA-Me). with accelerated senescence, as indicated by the loss of chlorophyll and the rapid decrease in activity and immunoreactive protein content of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBP carboxylase, EC 4.1.1.39). The senescence-promoting action of JA-Me differed in light and in darkness; e.g. the initial rates of chlorophyll and RuBP carboxylase breakdown were markedly higher in light than in darkness in the presence of 4.10−5 M JA-Me. Cytokinin (benzyladenine, 4.10−5 M ) stopped the loss of chlorophyll and RuBP carboxylase during senescence; however, the rapid drop induced by JA-Me in the early phase of leaf segment senescence could not be prevented by concomitant or previous addition of BA. On the other hand, BA added 24 h after JA-Me application resulted in a recovery of chlorophyll and RuBP carboxylase at the later stages, indicating a possible rapid inactivation of JA-Me in the tissues. The activities of a number of other chloroplastic and cytosolic enzymes were not significantly altered in JA-Me-treated leaf segments compared with controls floated on water. Time-dependent chlorophyll decrease in isolated chloroplasts did not change upon JA-Me addition to the isolated organelles. It is suggested that JA-Me acts on chloroplast senescence by promoting cytoplasic events which eventually bring about the degradation of chloroplast constituents.  相似文献   

8.
In the cyanobacterium Anacystis nidulans (Synechococcus PCC6301), ribulose 1,5-bisphosphate carboxylase/oxygenase (Rbu-P2 carboxylase) is composed of eight large subunits and eight small subunits. There are three regions of the small subunit that contain amino acids that are conserved throughout evolution, from bacteria to higher plants. Since the function of the small subunit is not fully understood, site-directed mutagenesis was performed on highly conserved residues in the first and second conserved regions. Ser-16, Pro-19, Leu-21, and Tyr-54 were replaced by Asp-16, His-19, Glu-21, and Ser-54, respectively. Crude extracts containing the recombinant His-19 mutant enzyme indicated that there was little effect on either Rbu-P2 carboxylase activity or interactions between large and small subunits. However, the Asp-16, Glu-21, and Ser-54 mutations showed effects on Rbu-P2 carboxylase activity and the interaction between large and small subunits. The large and small subunits of the Asp-16, Glu-21, and Ser-54 enzymes were found to dissociate during nondenaturing gel electrophoresis or sucrose density gradient centrifugation. However, the dissociated small subunits remained functional and were capable of reconstituting Rbu-P2 carboxylase activity when added to large subunits. These results indicated that Ser-16, Leu-21, and Tyr-54 might play an important role in interactions between large and small subunits of the A. nidulans enzyme.  相似文献   

9.
Kinetic parameters of ribulos-1,5-bisphosphate carboxylase/oxygenase (RuBP carboxylase) are usually evaluated in dilute solutions (less than 0.1 mg ml-1). Yet, this enzyme occurs in vivo at 100-200 mg ml-1 and a total protein concentration 300-400 mg ml-1. Enzymes can change their catalytic properties upon 'crowding'. Hence it became of interest to determine whether RuBP carboxylase elicits any properties not observable in dilute solution. Pre-steady state progress curves of fully activated enzyme showed an initial burst followed by a slower rate of product formation. The extent of the burst increased as concentration ratios of RuBP and RuBP carboxylase decreased. The burst corresponds to 1/8 turnover per holoenzyme or 1 turnover per active site. No discontinuity in progress curves was observed with partially activated enzyme.  相似文献   

10.
We have isolated and structurally characterized genomic DNA and cDNA sequences encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rbu-P2 carboxylase) activase from barley (Hordeum vulgare L.). Three Rbu-P2 carboxylase activase (Rca) polypeptides are encoded in the barley genome by two closely linked, tandemly oriented nuclear genes (RcaA and RcaB); cDNAs encoding each of the three Rbu-P2 carboxylase activase polypeptides were isolated from cDNA libraries of barley leaf mRNA. RcaA produces two mRNAs, which encode polypeptides of 42 and 46 kDa, by an alternative splicing mechanism identical to that previously reported for spinach and Arabidopsis Rca genes (Werneke, J.M., Chatfield, J.M., and Ogren, W. L. (1989) Plant Cell 1, 815-825). RcaB is transcribed to produce a single mRNA, which encodes a mature peptide of 42 kDa. Genomic Southern blots indicate that RcaA and RcaB represent the entire Rbu-P2 carboxylase activase gene family in barley. The genes share 80% nucleotide sequence identity, and the 42-kDa polypeptides encoded by RcaA and RcaB share 87% amino acid sequence identity. Coding regions of the two barley Rca genes are separated by 1 kilobase pair of flanking DNA. DNA sequence motifs similar to those thought to control light-regulated gene expression in other nuclear-encoded plastid polypeptide genes are found at the 5' end of both barley Rca genes. Probes specific to three mRNAs were used to determine the relative contribution each species makes to the total Rca mRNA pool.  相似文献   

11.
The two isoforms of ribulose 1,2-bisphosphate carboxylase activase (Rbu-P2 carboxylase) from spinach (Spinacea oleracea L.) were individually purified from Escherichia coli transformed with expression vectors for the appropriate cDNAs. Both isoforms catalyzed activation of Rbu-P2 carboxylase (ribulose 1,5-bisphosphate carboxylase/oxygenase, EC 4.1.1.39) and ATP hydrolysis. The kinetics of the two isoforms with respect to ATP concentration were different, in that the 45-kDa polypeptide exhibited a sigmoidal response while a rectangular response was observed with the 41-kDa isoform. These observations suggest that the additional domain at the C terminus of the 45-kDa isoform modulates the ATP regulation of activity. Lysine 169, at the putative ATP-binding site of the 41-kDa form of Rbu-P2 carboxylase activase, was changed to arginine, isoleucine, and threonine by directed mutagenesis. These mutations abolished Rbu-P2 carboxylase activase and ATPase activities, as well as the capability of the protein to bind ATP. These results confirm that lysine 169 is an essential residue.  相似文献   

12.
We have recently described the existence of two sets of genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rbu-P2 carboxylase), rbcA-rbcB and rbcL-rbcS, in the photosynthetic purple sulfur bacterium Chromatium vinosum (Viale, A.M., Kobayashi, H., and Akazawa, T. (1989) J. Bacteriol. 171, 2391-2400). These genes were cloned in plasmid vectors, and their expression was studied in Escherichia coli. Expression of rbcA-rbcB in E. coli was obtained under the control of its own promoter. On the other hand, expression of rbcL-rbcS in this host was not observed unless these genes were cloned under the control of the tac promoter. Purified rbcA-rbcB and rbcL-rbcS products from E. coli consisted of large and small subunits in equimolar ratios. They also showed very close elution profiles to Rbu-P2 carboxylase isolated from C. vinosum in size-exclusion chromatography columns, thus suggesting hexadecameric (L8S8) structures. Vmax of Rbu-P2 carboxylase were very similar for both enzymes, but the Km values for CO2 and ribulose 1,5-bisphosphate showed some differences. Immunochemical and N-terminal amino acid sequence analyses of the large and small subunits encoded by rbcA-rbcB and rbcL-rbcS also differed, especially at the level of the small subunits. The comparisons described above as well as the analysis of C. vinosum crude extracts by anion-exchange chromatography indicated that Rbu-P2 carboxylase encoded by rbcA-rbcB was the only species detected in the photosynthetic bacterium.  相似文献   

13.
The degradation of large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in wheat ( Triticum aestivum L. cv. Yangmai 158) leaves was studied. A novel 51-kDa fragment was detected in leaf crude extracts and in chloroplast lysates from leaves with dark-induced senescence. Further studies showed that the 51-kDa fragment was found in the reaction solution with stroma fraction but not in that with the chloroplast membrane fraction and in the chloroplast lysates from mature wheat leaves. The reaction of producing the 51-kDa fragment was inhibited by 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF), 1,10-phenanthroline and EDTA. The N-terminal sequence analysis indicated that the LSU was cleaved at the peptide bond between Lys-14 and Ala-15. In addition, a 50-kDa fragment of LSU formed obviously at pH 6.0–6.5 was detected in the crude extracts of leaves with dark-induced senescence but was not found in lysates of chloroplasts. The degradation was prevented by AEBSF, leupeptin and transepoxysuccinyl- l -leucylamido (4-guanidino) butane (E-64). The results obtained in this study imply that the appearance of the 51-kDa fragment could be because of the involvement of a new senescence-associated protease that is located in the stroma of chloroplasts in senescing wheat leaves.  相似文献   

14.
The coleoptile of rice (Oryza sativa L. cv. Nippon-bare) emerges from an imbibed seed on day 2 after sowing. Then, it matures and senesces rapidly. For analysis of the senescence pattern within individual coleoptiles, we monitored the distribution of chlorophyll (Chl) in entire coleoptiles and in cross-sections of coleoptiles by recording the autofluorescence of Chl. Degradation of Chl was apparent at the tip of the margins of opened-out coleoptiles on day 4, when the overall levels of soluble protein and Chl per coleoptile had reached maximum values. Then, senescence proceeded from the tip to the base and from the inner mesophyll cells towards the outer epidermis, excluding tissues along vascular bundles. Further analysis of cellular senescence using samples embedded in Technovit 7100 resin revealed that the senescence of each green mesophyll cell followed an identical program, which consisted of the following steps: (i) degradation of chloroplast DNA; (ii) condensation of the nucleus, decrease in the size of chloroplasts, degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase and chloroplast inner membranes; (iii) disorganization of the nucleus; (iv) complete loss of cellular components, distortion of the cell wall. Although the timing of each step and the rate at which each step was completed differed among cells of different locations within the coleoptile, this sequence was observed in all mesophyll cells in the coleoptile. Received: 31 July 1997 / Accepted: 28 October 1997  相似文献   

15.
Massive degradation of photosynthetic proteins is the hallmark of leaf senescence; however the mechanism involved in chloroplast protein breakdown is not completely understood. As small 'senescence-associated vacuoles' (SAVs) with intense proteolytic activity accumulate in senescing leaves of soybean and Arabidopsis, the main goal of this work was to determine whether SAVs are involved in the degradation of chloroplastic components. SAVs with protease activity were readily detected through confocal microscopy of naturally senescing leaves of tobacco (Nicotiana tabacum L.). In detached leaves incubated in darkness, acceleration of the chloroplast degradation rate by ethylene treatment correlated with a twofold increase in the number of SAVs per cell, compared to untreated leaves. In a tobacco line expressing GFP targeted to plastids, GFP was re-located to SAVs in senescing leaves. SAVs were isolated by sucrose density gradient centrifugation. Isolated SAVs contained chloroplast-targeted GFP and the chloroplast stromal proteins Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) and glutamine synthetase, but lacked the thylakoid proteins D1 and light-harvesting complex II of the photosystem II reaction center and photosystem II antenna, respectively. In SAVs incubated at 30 degrees C, there was a steady decrease in Rubisco levels, which was completely abolished by addition of protease inhibitors. These results indicate that SAVs are involved in degradation of the soluble photosynthetic proteins of the chloroplast stroma during senescence of leaves.  相似文献   

16.
Khanna-Chopra R 《Protoplasma》2012,249(3):469-481
Leaf senescence is a genetically programmed decline in various cellular processes including photosynthesis and involves the hydrolysis of macromolecules such as proteins, lipids, etc. It is governed by the developmental age and is induced or enhanced by environmental stresses such as drought, heat, salinity and others. Internal factors such as reproductive structures also influence the rate of leaf senescence. Reactive oxygen species (ROS) generation is one of the earliest responses of plant cells under abiotic stresses and senescence. Chloroplasts are the main targets of ROS-linked damage during various environmental stresses and natural senescence as ROS detoxification systems decline with age. Plants adapt to environmental stresses through the process of acclimation, which involves less ROS production coupled with an efficient antioxidant defence. Chloroplasts are a major site of protein degradation, and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is rapidly and selectively degraded during senescence and stress. The process of protein degradation is initiated by ROS and involves the action of proteolytic enzymes such as cysteine and serine proteases. The mechanism of Rubisco degradation still remains to be elucidated. The molecular understanding of leaf senescence was achieved through the characterization of senescence-associated genes and various senescence mutants of Arabidopsis, which is a suitable model plant showing monocarpic senescence. The regulation of senescence involves many regulatory elements composed of positive and negative elements to fine-tune the initiation and progression of senescence. This review gives an overview on chloroplast protein degradation during leaf senescence and abiotic stresses and also highlights the role of ROS management in both processes.  相似文献   

17.
In wheat (Triticum aestivum L.), leaf senescence can be initiated by different factors. Depending on the plant system (intact plants or detached leaves) or the environmental conditions (light, nutrient availability), the symptoms of senescence differ. The aim of this work was to elucidate the catabolism of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC. 4.1.1.39) under various senescence-inducing conditions. Leaf senescence was initiated in intact plants by darkness or by N-deprivation and in leaf segments by exposure to light or darkness. Depending on the treatment, a 50 kDa fragment of Rubisco was observed. The formation of this fragment was enhanced by leaf detachment and low light. In segments exposed to high light and in intact plants induced to senesce by N-deprivation, the fragment was essentially absent. Since an antibody against the N-terminus of a large subunit of Rubisco (LSU) did not cross-react with the fragment, it appears likely that a smaller fragment was removed from the N-terminus of LSU. Inhibitor studies suggest that a cysteine endopeptidase was involved in the formation of the 50 kDa fragment. Non-denaturing-PAGE followed by SDS-PAGE revealed that the fragment was produced while LSU was integrated in the holoenzyme complex, and that it remained there after being produced. It remains open how the putative endopeptidase reaches the stromal protein Rubisco. The results indicate that depending on the senescence-inducing conditions, different proteolytic enzymes may be involved. The involvement of vacuolar proteases must be considered as occurring during LSU degradation, which takes place in darkness, low light or under carbon limitation.  相似文献   

18.
In intact chloroplasts isolated from mature pea leaves (Pisum sativum L.), the large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) was rapidly fragmented into several products upon illumination in the presence of 1 mM dithiothreitol (DTT). Very similar effects on LSU stability could be observed when illuminated chloroplasts were poisoned with cyanide which, like DTT, inhibits important plastid antioxidant enzymes, or when a light-dependent hydroxyl radical-producing system was added to the incubation medium. Moreover, DTT-stimulated light degradation of LSU was markedly delayed in the presence of scavengers of active oxygen species (AOS). It is therefore suggested that light degradation of LSU in the presence of DTT is mainly due to inhibition of the chloroplast antioxidant defense system and the subsequent accumulation of AOS in intact organelles. When chloroplasts were isolated from nonsenescent or senescent leaves, LSU remained very stable upon incubation without DTT, indicating that the antioxidant system was still functional in the isolated chloroplasts during leaf ageing. Our data support the notion that AOS might be important for the degradation of Rubisco in vivo under oxidative stress.  相似文献   

19.
Mechanically isolated asparagus (Asparagus officinalis) mesophyll cells dedifferentiate and divide when cultured in the dark in a medium containing sucrose. A strong correlation was observed between the onset of cell division and a loss of photosynthetic capacity. For the first 8 to 9 d of culture, there was no change in chloroplast size or morphology. However, following this period, the chloroplasts divided to form smaller proplastid-like structures. The gross chlorophyll content of the cell population did not change, suggesting that the loss of photosynthetic potential was not by senescence. Northern analysis showed that mRNA of the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase was undetectable within 1 d postisolation, which was quicker than in dark-treated plants. The mRNA of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase decreased to low levels within 2 d of cell isolation. Both the large and small subunits of ribulose 1,5-bisphosphate carboxylase/oxygenase protein showed a gradual reduction in abundance, falling to basal levels by days 6 to 7, which coincided with the onset of rapid cell division. A similar trend was observed with chloroplast rRNA molecules, which decreased to basal levels by day 6 in culture.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号