首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intricate network of interactions observed in RNA three-dimensional structures is often described in terms of a multitude of geometrical properties, including helical parameters, base pairing/stacking, hydrogen bonding and backbone conformation. We show that a simple molecular representation consisting in one oriented bead per nucleotide can account for the fundamental structural properties of RNA. In this framework, canonical Watson-Crick, non-Watson-Crick base-pairing and base-stacking interactions can be unambiguously identified within a well-defined interaction shell. We validate this representation by performing two independent, complementary tests. First, we use it to construct a sequence-independent, knowledge-based scoring function for RNA structural prediction, which compares favorably to fully atomistic, state-of-the-art techniques. Second, we define a metric to measure deviation between RNA structures that directly reports on the differences in the base–base interaction network. The effectiveness of this metric is tested with respect to the ability to discriminate between structurally and kinetically distant RNA conformations, performing better compared to standard techniques. Taken together, our results suggest that this minimalist, nucleobase-centric representation captures the main interactions that are relevant for describing RNA structure and dynamics.  相似文献   

2.
RNA is involved in a broad range of biological processes that extend far beyond translation. Many of RNA’s recently discovered functions rely on folding to a specific conformation or transitioning between conformations. The RNA structure contains rigid, short basepaired regions connected by more flexible linkers. Studies of model constructs such as small helix-junction-helix (HJH) motifs are useful in understanding how these elements work together to determine RNA conformation. Here, we reveal the full ensemble of solution structures assumed by a model RNA HJH. We apply small-angle x-ray scattering and an ensemble optimization method to selectively refine models generated by all-atom molecular dynamics simulations. The expectation of a broad distribution of helix orientations, at and above physiological ionic strength, is not met. Instead, this analysis shows that the HJH structures are dominated by two distinct conformations at moderate to high ionic strength. Atomic structures, selected from the molecular dynamics simulations, reveal strong base-base interactions in the junction that critically constrain the conformational space available to the HJH molecule and lead to a surprising re-extension at high salt. These results are corroborated by comparison with previous single-molecule fluorescence resonance energy transfer experiments on the same constructs.  相似文献   

3.
The lonepair triloop (LPTL) is an RNA structural motif that contains a single ("lone") base-pair capped by a hairpin loop containing three nucleotides. The two nucleotides immediately outside of this motif (5' and 3' to the lonepair) are not base-paired to one another, restricting the length of this helix to a single base-pair. Four examples of this motif, along with three tentative examples, were initially identified in the 16S and 23S rRNAs with covariation analysis. An evaluation of the recently determined crystal structures of the Thermus thermophilus 30S and Haloarcula marismortui 50S ribosomal subunits revealed the authenticity for all of these proposed interactions and identified 16 more LPTLs in the 5S, 16S and 23S rRNAs. This motif is found in the T loop in the tRNA crystal structures. The lonepairs are positioned, in nearly all examples, immediately 3' to a regular secondary structure helix and are stabilized by coaxial stacking onto this flanking helix. In all but two cases, the nucleotides in the triloop are involved in a tertiary interaction with another section of the rRNA, establishing an overall three-dimensional function for this motif. Of these 24 examples, 14 occur in multi-stem loops, seven in hairpin loops and three in internal loops. While the most common lonepair, U:A, occurs in ten of the 24 LPTLs, the remaining 14 LPTLs contain seven different base-pair types. Only a few of these lonepairs adopt the standard Watson-Crick base-pair conformations, while the majority of the base-pairs have non-standard conformations. While the general three-dimensional conformation is similar for all examples of this motif, characteristic differences lead to several subtypes present in different structural environments. At least one triloop nucleotide in 22 of the 24 LPTLs in the rRNAs and tRNAs forms a tertiary interaction with another part of the RNA. When a LPTL containing the GNR or UYR triloop sequence forms a tertiary interaction with the first (and second) triloop nucleotide, it recruits a fourth nucleotide to mediate stacking and mimic the tetraloop conformation. Approximately half of the LPTL motifs are in close association with proteins. The majority of these LPTLs are positioned at sites in rRNAs that are conserved in the three phylogenetic domains; a few of these occur in regions of the rRNA associated with ribosomal function, including the presumed site of peptidyl transferase activity in the 23S rRNA.  相似文献   

4.
Analysis of aligned RNA sequences and high-resolution crystal structures has revealed a new RNA structural element, termed the UAA/GAN motif. Found in internal loops of the 23 S rRNA, as well as in RNase P RNA and group I and II introns, this six-nucleotide motif adopts a distinctive local structure that includes two base-pairs with non-canonical conformations and three conserved adenine bases, which form a cross-strand AAA stack in the minor groove. Most importantly, the motif invariably forms long-range tertiary contacts, as the AAA stack typically forms A-minor interactions and the flipped-out N nucleotide forms additional contacts that are specific to the structural context of each loop. The widespread presence of this motif and its propensity to form long-range contacts suggest that it plays a critical role in defining the architectures of structured RNAs.  相似文献   

5.
RNA molecules with novel functions have revived interest in the accurate prediction of RNA three-dimensional (3D) structure and folding dynamics. However, existing methods are inefficient in automated 3D structure prediction. Here, we report a robust computational approach for rapid folding of RNA molecules. We develop a simplified RNA model for discrete molecular dynamics (DMD) simulations, incorporating base-pairing and base-stacking interactions. We demonstrate correct folding of 150 structurally diverse RNA sequences. The majority of DMD-predicted 3D structures have <4 A deviations from experimental structures. The secondary structures corresponding to the predicted 3D structures consist of 94% native base-pair interactions. Folding thermodynamics and kinetics of tRNA(Phe), pseudoknots, and mRNA fragments in DMD simulations are in agreement with previous experimental findings. Folding of RNA molecules features transient, non-native conformations, suggesting non-hierarchical RNA folding. Our method allows rapid conformational sampling of RNA folding, with computational time increasing linearly with RNA length. We envision this approach as a promising tool for RNA structural and functional analyses.  相似文献   

6.
7.
RNA folding is assumed to be a hierarchical process. The secondary structure of an RNA molecule, signified by base-pairing and stacking interactions between the paired bases, is formed first. Subsequently, the RNA molecule adopts an energetically favorable three-dimensional conformation in the structural space determined mainly by the rotational degrees of freedom associated with the backbone of regions of unpaired nucleotides (loops). To what extent the backbone conformation of RNA loops also results from interactions within the local sequence context or rather follows global optimization constraints alone has not been addressed yet. Because the majority of base stacking interactions are exerted locally, a critical influence of local sequence on local structure appears plausible. Thus, local loop structure ought to be predictable, at least in part, from the local sequence context alone. To test this hypothesis, we used Random Forests on a nonredundant data set of unpaired nucleotides extracted from 97 X-ray structures from the Protein Data Bank (PDB) to predict discrete backbone angle conformations given by the discretized η/θ-pseudo-torsional space. Predictions on balanced sets with four to six conformational classes using local sequence information yielded average accuracies of up to 55%, thus significantly better than expected by chance (17%-25%). Bases close to the central nucleotide appear to be most tightly linked to its conformation. Our results suggest that RNA loop structure does not only depend on long-range base-pairing interactions; instead, it appears that local sequence context exerts a significant influence on the formation of the local loop structure.  相似文献   

8.
RNA performs a variety of diverse functions and therefore must adopt many different three-dimensional conformations. The number and complexity of RNA structures that are currently available are steadily increasing, necessitating the generation of versatile structure visualization tools. Here, we describe a new RNA secondary and tertiary structure visualization tool, the display program coloRNA. This program colors each nucleotide in a secondary structure schematic according to the value of an assigned property of the corresponding backbone phosphate group, such as the distance between corresponding residues in two atomic models of the same RNA molecule. To assist in analyzing tertiary structure, coloRNA also colors nucleotides based on the three-dimensional distances between a user-selected nucleotide and all others. Minimum and maximum thresholds can be used to focus in on, or eliminate, a particular value range. coloRNA can display a user-specified group of nucleotides by outlining the structure in an automatically assigned, but user-changeable color. As an example, we have used coloRNA to analyze a pair of recently published structures of the Escherichia coli 70S ribosome. When coloRNA is used to display the conformational difference between the two structures, the large movement of the small subunit head stands visually out from the background changes in the remaining domains of the small subunit.  相似文献   

9.
A computational system, CSNA, for classifying RNA structures according to structural characters was developed. CSNA lists up all the hydrogen bonds and base-base stackings in the structures, and classifies the structures into sub-groups based on their patterns as the first step grouping. The frequency of each hydrogen bond or base-base stacking is calculated, the frequency score being defined as the sum of the frequency of existing hydrogen bonds or base-base stackings for each sub-group. Finally, the sub-groups are further classified into groups based on the frequency score defined in this study and the difference between the patterns. According to the frequency score, CSNA suggests a group that shares most frequently appearing hydrogen bonds and base-base stackings. CSNA was applied to the classification of the results of two individual simulated annealing calculations based on NMR information. It was found that CSNA could extract structures with lower energy without checking any energy term and could provide well converged groups as the lowest energy structures. Thus, CSNA could be a new tool for structural determination of nucleic acids.  相似文献   

10.
BACKGROUND: The 3.0 A crystal structure of the vitamin B(12) RNA aptamer revealed an unusual tertiary structure that is rich in novel RNA structural motifs. Important details of the interactions that stabilize noncanonical base pairing and the role of solvent in the structure were not apparent owing to the limited resolution. RESULTS: The structure of the vitamin B(12) RNA aptamer in complex with its ligand has been determined at 2.3 A resolution by X-ray crystallography. The crystallographic asymmetric unit contains five independent copies of the aptamer-vitamin B(12) complex, making it possible to accurately define well-conserved features. The core of the aptamer contains an unusual water-filled channel that is buried between the three strands of an RNA triplex. Well-ordered water molecules positioned within this channel form bridging hydrogen bonds and stabilize planar base triples that otherwise lack significant direct base-base contacts. The water channel terminates at the interface between the RNA and the bound ligand, leaving a pair of water molecules appropriately positioned to hydrogen bond with the highly polarized cyanide nitrogen of vitamin B(12). Analysis of the general solvation patterns for each nucleotide suggests that water molecules are not precisely positioned, as observed in previous RNA duplex structures, but instead might adjust in response to the varying local environment. Unusual intermolecular base pairing contributes to the formation of three different dimerization contacts that drive formation of the crystal lattice. CONCLUSIONS: The structure demonstrates the important role of water molecules and noncanonical base pairing in driving the formation of RNA tertiary structure and facilitating specific interactions of RNAs with other molecules.  相似文献   

11.
Topologically knotted proteins are tantalizing examples of how polypeptide chains can explore complex free energy landscapes to efficiently attain defined knotted conformations. The evolution trails of protein knots, however, remain elusive. We used circular permutation to change an evolutionally conserved topologically knotted SPOUT RNA methyltransferase into an unknotted form. The unknotted variant adopted the same three-dimensional structure and oligomeric state as its knotted parent, but its folding stability was markedly reduced with accelerated folding kinetics and its ligand binding was abrogated. Our findings support the hypothesis that the universally conserved knotted topology of the SPOUT superfamily evolved from unknotted forms through circular permutation under selection pressure for folding robustness and, more importantly, for functional requirements associated with the knotted structural element.  相似文献   

12.
J K James  I Tinoco  Jr 《Nucleic acids research》1993,21(14):3287-3293
The solution structure of the DNA analogue of the unusually stable r[C(UUCG)G] RNA hairpin, 5'-d[GGA-C(TTCG)GTCC]-3', has been determined by NMR spectroscopy, and its structure has been compared to that of the RNA molecule. The RNA molecule is compact and rigid with a highly structured loop. However, the DNA molecule is much less structured. The DNA hairpin contains a B-form stem of four base pairs. The terminal base pair frays, and the 3'-terminal nucleotides, C11 and C12, are in equilibrium between 2'-endo and 3'-endo conformations. Unlike the RNA loop, the DNA loop contains no syn nucleotides, and there is no evidence for base-base or base-phosphate hydrogen bonding in the loop. The loop is flexible, and reveals no specific internucleotide interactions.  相似文献   

13.
The analysis and prediction of non-canonical structural motifs in RNA is of great importance for an understanding of the function and design of RNA structures. A hierarchical method has been employed to generate a large variety of sterically possible conformations for a single-base adenine bulge structure in A -form DNA and RNA. A systematic conformational search was performed on the isolated bulge motif and neighboring nucleotides under the constraint to fit into a continuous helical structure. These substructures were recombined with double-stranded DNA or RNA. Energy minimization resulted in more than 300 distinct bulge conformations. Energetic evaluation using a solvation model based on the finite-difference Poisson-Boltzmann method identified three basic classes of low-energy structures. The three classes correspond to conformations with the bulge base stacked between flanking nucleotides (I), location of the bulge base in the minor groove (II) and conformations with a continuous stacking of the flanking helices and a looped out bulge base (III). For the looped out class, two subtypes (IIIa and IIIb) with different backbone geometries at the bulge site could be distinguished. The conformation of lowest calculated energy was a class I structure with backbone torsion angles close to those in standard A -form RNA. Conformations very close to the extra-helical looped out bulge structure determined by X-ray crystallography were also among the low-energy structures. In addition, topologies observed in other experimentally determined bulge structures have been found among low-energy conformers. The implicit solvent model was further tested by comparing an uridine and adenine bulge flanked by guanine:cytosine base-pairs, respectively. In agreement with the experimental observation, a looped out form was found as the energetically most favorable form for the uridine bulge and a stacked conformation in case of the adenine bulge. The inclusion of solvation effects especially electrostatic reaction field contributions turned out to be critically important in order to select realistic low-energy bulge structures from a large number of sterically possible conformations. The results indicate that the approach might be useful to model the three-dimensional structure of non-canonical motifs embedded in double-stranded RNA, in particular, to restrict the number of possible conformations to a manageable number of conformers with energies below a certain threshold.  相似文献   

14.
The 3'-end region of the genomic RNA of brome mosaic virus forms a tRNA-like structure that is critical for its replication. Previous studies have shown that in this region, a stem-loop structure, called SLC, is necessary and sufficient for the binding of the RNA replicase, and for RNA replication. Recently, we determined the high-resolution NMR structure of SLC, which demonstrated that a 5'-AUA-3' triloop region is an important structural element for the enzymatic recognition. We proposed that the 5'-adenine of the triloop, which is rigidly fixed ("clamped") to the stem, is a key recognition element for the replicase. To elucidate the role of this "clamped base motif" for the enzymatic recognition, we have now investigated the solution conformations of several stem-loop molecules with mutant triloops, 5'-UUA-3', 5'-GUA-3', 5'-CUA-3' and 5'-UUU-3', that destroy the enzymatic recognition. For the GUA and UUA mutants, we have obtained high-resolution solution structures using 2D NMR. All four mutants have very similar thermodynamic stabilities, and all have the same secondary structures, a triloop with a five base-paired stem helix. In addition, they have quite similar sugar puckering patterns in the triloop region. The NMR structures of the GUA and UUA show that the 5' nucleotide of the triloop (G6 in GUA or U6 in UUA) lacks the strong interactions that hold its base in a fixed position. In particular, the U6 of UUA is found in two different conformations. Neither of these two mutants has the clamped base motif that was observed in the wild-type. While UUA also shows global change in the overall triloop conformation, GUA shows a very similar triloop conformation to the wild-type except for the lack of this motif. The absence of the clamped base motif is the only common structural difference between these two mutants and the wild-type. These results clearly indicate that the loss of function of the UUA and GUA mutants comes mainly from the destruction of a small key recognition motif rather than from global changes in their triloop conformations. Based on this study, we conclude that the key structural motif in the triloop recognized by the replicase is a solution-exposed, 5'-adenine base in the triloop that is clamped to the stem helix, which is called a clamped adenine motif.  相似文献   

15.
We combined atomistic molecular-dynamics simulations with quantum-mechanical calculations to investigate the sequence dependence of the stretching behavior of duplex DNA. Our combined quantum-mechanical/molecular-mechanical approach demonstrates that molecular-mechanical force fields are able to describe both the backbone and base-base interactions within the highly distorted nucleic acid structures produced by stretching the DNA from the 5′ ends, which include conformations containing disassociated basepairs, just as well as these force fields describe relaxed DNA conformations. The molecular-dynamics simulations indicate that the force-induced melting pathway is sequence-dependent and is influenced by the availability of noncanonical hydrogen-bond interactions that can assist the disassociation of the DNA basepairs. The biological implications of these results are discussed.  相似文献   

16.
Release 2.0.1 of the Structural Classification of RNA (SCOR) database, http://scor.lbl.gov, contains a classification of the internal and hairpin loops in a comprehensive collection of 497 NMR and X-ray RNA structures. This report discusses findings of the classification that have not been reported previously. The SCOR database contains multiple examples of a newly described RNA motif, the extruded helical single strand. Internal loop base triples are classified in SCOR according to their three-dimensional context. These internal loop triples contain several examples of a frequently found motif, the minor groove AGC triple. SCOR also presents the predominant and alternate conformations of hairpin loops, as shown in the most well represented tetraloops, with consensus sequences GNRA, UNCG and ANYA. The ubiquity of the GNRA hairpin turn motif is illustrated by its presence in complex internal loops.  相似文献   

17.
PKB: a program system and data base for analysis of protein structure   总被引:2,自引:0,他引:2  
S H Bryant 《Proteins》1989,5(3):233-247
PKB is a computer program system that combines a data base of three-dimensional protein structures with a series of algorithms for pattern recognition, data analysis, and graphics. By typing relatively simple commands the user may search the data base for instances of a structural motif and analyze in detail the set of individual structures that are found. The application of PKB to the study of protein folding is illustrated in three examples. The first analysis compares the conformations observed for a short sequential motif, sequences similar to the cell-attachment signal Arg-Gly-Asp. The second compares sequences observed for a conformational motif, a 16-residue beta alpha beta unit. The third analysis considers a population of substructures containing ion-pair interactions, examining the relationship of frequency of occurrence to calculated electrostatic energy.  相似文献   

18.
Our knowledge of protein interactions with RNA molecules has been, so far, largely restricted to cases in which the RNA itself is folded into a secondary and/or tertiary structure stabilised by intramolecular base pairing and stacking. Until recently, only limited structural information has been available about protein interactions with single-stranded RNA. A breakthrough in our understanding of these interactions came in 1999, with the determination of four crystal structures of protein complexes with extended single-stranded RNA molecules. These structures revealed wonderfully satisfying patterns of the ability of proteins to accommodate RNA bases, with the sugar-phosphate backbone often adopting conformations that are different from the classical double helix.  相似文献   

19.
Computational three-dimensional chromatin modeling has helped uncover principles of genome organization. Here, we discuss methods for modeling three-dimensional chromatin structures, with focus on a minimalistic polymer model which inverts population Hi-C into single-cell conformations. Utilizing only basic physical properties, this model reveals that a few specific Hi-C interactions can fold chromatin into conformations consistent with single-cell imaging, Dip-C, and FISH measurements. Aggregated single-cell chromatin conformations also reproduce Hi-C frequencies. This approach allows quantification of structural heterogeneity and discovery of many-body interaction units and has revealed additional insights, including (1) topologically associating domains as a byproduct of folding driven by specific interactions, (2) cell subpopulations with different structural scaffolds are developmental stage dependent, and (3) the functional landscape of many-body units within enhancer-rich regions. We also discuss these findings in relation to the genome structure–function relationship.  相似文献   

20.
RNA structural motifs are recurrent three-dimensional (3D) components found in the RNA architecture. These RNA structural motifs play important structural or functional roles and usually exhibit highly conserved 3D geometries and base-interaction patterns. Analysis of the RNA 3D structures and elucidation of their molecular functions heavily rely on efficient and accurate identification of these motifs. However, efficient RNA structural motif search tools are lacking due to the high complexity of these motifs. In this work, we present RNAMotifScanX, a motif search tool based on a base-interaction graph alignment algorithm. This novel algorithm enables automatic identification of both partially and fully matched motif instances. RNAMotifScanX considers noncanonical base-pairing interactions, base-stacking interactions, and sequence conservation of the motifs, which leads to significantly improved sensitivity and specificity as compared with other state-of-the-art search tools. RNAMotifScanX also adopts a carefully designed branch-and-bound technique, which enables ultra-fast search of large kink-turn motifs against a 23S rRNA. The software package RNAMotifScanX is implemented using GNU C++, and is freely available from http://genome.ucf.edu/RNAMotifScanX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号