首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
The objective of this study was to provide new synthetic route to prepare starch as a potential carrier for controlled release of drugs. A starch was modified with bromoacetyl bromide in order to provide more reactive sites for coupling of bioactive estrone and a suitable spacer between the drug carrier and the hormone. The degree of substitution (D.S.) per anhydroglucose (AHG) unit was calculated from the bromine content and ranged from 0.11 to 2.29, depending on the ratio of bromoacetyl bromide to starch. The starch-estrone conjugate was then synthesized by reacting bromoacetylated starch with the sodium salt of estrone. The structures of bromoacetylated starch and starch-estrone conjugate were determined by means of FTIR,1H NMR,13C NMR and UV. Additionally, X-ray diffraction patterns showed the amorphous character of the bromoacetylated starches.  相似文献   

2.
Low-molecular-weight (LMW) κ-carrageenan was achieved through mild hydrochloric acid hydrolysis of κ-carrageenan. The acylation of LMW κ-carrageenan was performed by use of tetrabutylammonium (TBA) salt of the anionic polysaccharide fragments, succinic anhydride, 4-dimethylaminopyridine and tributylamine under homogeneous conditions in N,N-dimethylformamide at 80 °C. Investigation of FT-IR spectrum of the succinylated LMW κ-carrageenan showed that a monoester derivative with succinyl group was formed when LMW κ-carrageenan reacted with succinic anhydride. The 1H and 13C NMR spectroscopy has been used to characterize the fine structure of O-succinyl derivative of the LMW κ-carrageenan. The 13C and 1H NMR chemical shifts of disaccharide unit of O-succinyl LMW κ-carrageenan have been fully assigned using 2D NMR spectroscopic techniques.  相似文献   

3.
The chemical modification of native sugarcane bagasse hemicelluloses with succinic anhydride using N-bromosuccinimide as a catalyst and N,N-dimethylacetamide/lithium chloride system as solvent was studied. The parameters optimised included succinic anhydride concentration by the molar ratio of succinic anhydride/anhydroxylose units in native hemicelluloses from 1:1 to 9:1, reaction time 0.5–6 h, NBS concentration 0.5–3.0%, and reaction temperature 25–85 °C required in the process. Results were also compared with other catalysts such as pyridine, DMAP, H2SO4, and other two tertiary amine catalysts, N-methyl pyrrolidine, and N-methyl pyrrolidinone. The degree of substitution of succinylated hemicelluloses ranged between 0.19 and 1.39, depending on the experimental conditions. FT-IR and 1H and 13C NMR spectroscopic characterization of the esterified polymers indicated a monoester substitution. The thermal stability of the succinylated hemicelluloses decreased upon chemical modification.  相似文献   

4.
We have examined a lipase-catalyzed bidirectional ester synthesis/hydrolysis reaction in a water-in-oil microemulsion system. The reactants were cholesterol (alcohol), oleic acid (acid) and cholesterol oleate (ester), and the solvent system consisted of sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane/water. The reactions were assayed by using [3H]oleic acid, [3H]cholesterol, or [3H]cholesterol oleate for the synthesis and hydrolysis reactions, respectively (separate incubations). The lipase that we used derived from Candida cylindracea, and was used at a concentration of 0.1mg/ml microemulsion. The reactions were performed at 22°C as the reactions proceeded more slowly at higher temperatures. With the initial reactant concentrations set to 10 mM cholesterol, 1 min oleic acid, and 1 mM cholesterol oleate, it was observed that the optimal [H2O]/[AOT] ratio was at about 9 both for the esterification reaction and for the hydrolysis reaction (after 24 h). The hydrolysis reaction was slower than the synthesis reaction at all [H2O]/[AOT] ratios studied (0-20), but the difference in reaction yield for the synthesis and the hydrolysis reactions became smaller as the reaction time increased (up to 11 days). When the reaction yield was followed as a time function, it was observed that about 80% of the oleic acid was esterified within 3 days of reaction ([H2O]/[AOT] ratio of 6), whereas the corresponding value of 80% hydrolysis of cholesterol oleate was reached within 11 days. The results of the present study indicate that by choosing optimal reactant concentrations and reaction conditions, it is at least in part possible to determine the direction of the lipase-catalyzed synthesis/hydrolysis reaction.  相似文献   

5.
Dextran was synthesized using dextransucrase from Streptococus sanguis 10558 and (F)-[14C]sucrose as substrate to test the possibility that sucrose may be the initial acceptor for glucose. If sucrose is the initial acceptor, then dextran chains should have [14C] fructose in a terminal ‘sucrose’ linkage which can be cleaved under mild conditions. Although incorporation of [14C]fructose into dextran was observed, the label was not released by mild hydrolysis, indicating that sucrose is not the initiator for dextran synthesis. Incorporation of [14C]fructose into dextran might represent its ability to act as an acceptor, as suggested by the isolation of leucrose as a by-product in the reaction.  相似文献   

6.
A novel series of extrinsic probes for intracellular pH (pHi) determination by 1H NMR is described. Imidazol-1-ylacetate, malonate, 3-glutarate and 2-succinate esters were synthesized by reaction of imidazole either with -bromoesters or with ,β-unsaturated esters. The corresponding acids were prepared by hydrolysis.  相似文献   

7.
A series of 1,3-dioxolane-based ligands, bearing hydroxymethyl or ester functionalities, was synthesized and tested as potential muscarinic antagonists. The compounds display moderate to low affinity for the three receptor subtypes M1-M3, with some of them showing a significant selectivity for the M3 subtype. The configurational and conformational properties were studied using NOE experiments and vicinal coupling constants. The 1H and 13C NMR chemical shifts show stereochemically dependent trends. Quantitative analysis of conformer populations showed that the exocyclic CH2N+(CH3)3 group is prevalently in a pseudo-axial orientation in the cis isomers and in a pseudo-equatorial orientation in the trans isomers.  相似文献   

8.
The formation of three [Tl(en)n]3+ complexes (n=1–3) in a pyridine solvent has been established by means of 205Tl and 1H NMR. Their stepwise stability constants based on concentrations, Kn=[Tl(en)n 3+]/{[Tl(en)n−1 3+]·[en]}, at 298 K in 0.5 M NaClO4 ionic medium in pyridine, were calculated from 205Tl NMR integrals: log K1=7.6±0.7; log K2=5.2±0.5 and log K3=2.64±0.05. Linear correlation between both the 205Tl NMR shifts and spin–spin coupling 205Tl–1H versus the stability constants has been found and discussed. A single crystal with the composition [Tl(en)3](ClO4)3 was synthesized and its structure determined by X-ray diffraction. The Tl3+ ion is coordinated by three ethylenediamine ligands via six N-donor atoms in a distorted octahedral fashion.  相似文献   

9.
Takaharu Mizutani   《FEBS letters》1989,250(2):142-146
In order to clarify the mechanisms of selenocysteine incorporation into glutathione peroxidase, some evidence to show the in vitro conversion of phosphoseryl-tRNA to selenocysteyl-tRNA is reported. [3H]Phosphoseryl-tRNA was incubated in a reaction mixture composed of SeO2, glutathione and NADPH in the presence of selenium-transferase partially purified. Analyses of amino acids on the product tRNA showed that a part (4%) of [3H]phosphoseryl-tRNA was changed to [3H]selenocysteyl-tRNA. The conversion from seryl-tRNAsu or major seryl-tRNAIGA was not found. Selenium-transferase was essential for the conversion. [3H]Selenocysteine, liberated from the tRNA, was modified with iodoacetic acid. The product was confirmed to be carboxymethyl-selenocysteine by two-dimensional TLC. Selenocysteyl-tRNAsu should be used to synthesize glutathione peroxidase by co-translational mechanisms.  相似文献   

10.
The effects of phorbol myristate acetate, an activator of protein kinase C, on the release of [3H]arachidonic acid and prostaglandin synthesis were studied in an osteoblast cell line (MC3T3-E1). Phorbol myristate acetate (20 uM) liberated 16 and 55% of the [3H]arachidonate in prelabeled phosphatidylinositol and phosphatidylethanolamine, respectively, and evoked a 19-fold stimulation in the synthesis of prostaglandin E2. Phorbol myristate acetate doubled the cellular mass of 1,2-diacylglycerol and stimulated the liberation of [3H]arachidonate from the diacylglycerol pool in prelabeled cells. The diacylglycerol lipase inhibitor RHC 80267 blocked 75–80% of the phorbol ester-promoted (total) cellular liberation of [3H]arachidonic acid and production of prostaglandin E2. In comparison, the release of [3H]arachidonate from phosphatidylethanolamine (but not phosphatidylinositol) was only partially antagonized (to the same degree) by the PLA2 inhibitor p-bromophenacylbromide and the protein kinase C inhibitor Et-18-OMe. PMA-induced formation of diacylglycerol or synthesis of PGE2 was not affected by the prior inhibition of protein kinase C. Therefore, we have shown a novel pathway for the liberation of arachidonic acid in osteoblasts involving the nonspecific hydrolysis of phosphatidylinositol and phosphatidylethanolamine by phospholipase C followed by the deesterification of diacylgycerol. This pathway can be activated by a phorbol ester through a protein kinase C-independent mechanism.  相似文献   

11.
The triazenide complex of Pt(II) trans-(o-Tol)Pt(PEt3)2N3Ar2(1) (Ar = p-FC6H4) was synthesized by reaction of (o-Tol)Pt(PEt3)2BF4 with Ar2N3Na. The 1H, 19F and 31P NMR spectra of this complex in toluene-d8 were studied at different temperatures. Two kinds of dynamic processes were observed. The first one is the intramolecular N,N′ migration of the (o-Tol)Pt(PEt3)2 group, detected by 19F NMR. The second process, revealed by 1H, 19P NMR, is the rotation around the partially double N(2)–N(3) bond. Thermodynamic parameters for these processes were calculated from dynamic NMR spectra.  相似文献   

12.
13.
Lignin obtained from eucalyptus wood by acetic acid pulping was methylolated or phenolated and used to prepare lignin-phenol-formaldehyde resins. The amount of formaldehyde consumed in the methylolation reaction, and supporting comparison of pre- and post-methylolation 1H and 13C NMR spectra, showed the reactivity of the crude acetosolv lignin with formaldehyde to be relatively high. Pine and eucalyptus plywood boards manufactured using the resins prepared with the modified lignins complied with European Standard EN 314-1:1993 for WBP quality boards and gave knife test results similar to those of boards manufactured with a commercial phenol-formaldehyde resin.  相似文献   

14.
A 4-O-methylglucuronoxylan was converted into a hexenuronoxylan at high temperature and alkalinity similar to the conditions used during kraft pulping. The hexenuronoxylan was hydrolysed with enzymes, and acidic xylooligosaccharides were separated from the hydrolysate by anion-exchange and size-exclusion chromatography. The primary structure of the two main hexenuronic acid-substituted xylooligosaccharides (a tetramer and a pentamer) was determined by two-dimensional 1H and 13C NMR spectroscopy. The 4-deoxy-hexenutronic acid is not stable under the acid hydrolysis step of conventional carbohydrate analysis. Here, we have identified the acidic degradation products of 4-deoxy-hexenuronic acid by NMR spectroscopy. Two degradation pathways were observed, both resulting in a furan derivative.  相似文献   

15.
The reaction between [(η6-p-cymene)Ru(H2O)3]X2 and 4,7-phenanthroline (phen) leads to the formation of the rectangular tetranuclear complexes [(η6-p-cymene)4Ru4(μ-4,7-phen-N4,N7)2(μ-OH)4]X4 (X = NO3, 1a; SO3CF3, 1b) which have been structurally characterised by X-ray crystallography. 1H NMR spectroscopic studies suggest the presence of a partially dissociated dinuclear species of type [(η6-p-cymene)2Ru2(μ-4,7-phen-N4,N7)(solv)4]4+ in equilibrium with the tetranuclear cyclic species found in the solid state. The temperature effect for this equilibrium was studied by variable temperature 1H NMR experiments in D2O and MeOD. The results reveal that the proportion of the tetranuclear species increases with the polarity of the solvent which favour stacking interactions between the phenanthroline moieties. In addition, the reactivity of the tetranuclear species towards the nucleosides guanosine (Guo), cytidine (Cyt), 2′-deoxythymidine (Thy) and 2′-deoxyadenosine (dAdo) has been monitored by 1H NMR as a potential model for the interaction of the 1 species with the probable DNA target. The results reveal that the 1 systems are able to bind the nucleobases endocyclic nitrogen atoms of Guo Cyt, and dAdo.  相似文献   

16.
In neuroblastoma × glioma hybrid cells (NG 108-15) labelled with [32P]-trisodium phosphate, [3H]-inositol and [14C]-arachidonic acid, bradykinin stimulated the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) while it had no effect on the release of [14C]-arachidonic acid (AA). The effect on PIP, was time- and dose-dependent with a maximal effect on [3H]-inositol- and [32P]-labelled cells after 10–30 s of stimulation with 10−6 M bradykinin. However, the hydrolysis of [14C]-AA labelled PIP2 was delayed compared to the effect on [3H]- and [14C]-PIP2 and was not detectable until after 60 s of stimulation. Bradykinin stimulation resulted in an increased formation of [3H]-inositol phosphates (IP) and [32P]- and [14P]- and [14C]-phosphatidic acid (PA) but the time course for PA formation did not allow the time-course for PIP2 hydrolysis. A reduced labelling of [23P]- and [14C]-phosphatidylcholine was also found in stimulated cells suggesting that PA may derive from other sources than PIP2. In conclusion, our results indicate that bradykinin activates phospholipase C, but not phospholipase A2, in NG 108-15 cells.  相似文献   

17.
Several novel dimers of the composition [M2Cl4(trans-dppen)2] (M=Ni (1), Pd (2), Pt (3)) containing trans-1,2-bis(diphenylphosphino)ethene (trans-dppen) have been prepared and characterized by X-ray diffraction methods, NMR spectroscopy (195Pt{1H}, 31P{1H}), elemental analyses, and melting points. The intramolecular [2+2] photocycloaddition of the two diphosphine-bridges in 3 produces [Pt2Cl4(dppcb)] (4), where dppcb is the new tetradentate phosphine cis,trans,cis-1,2,3,4-tetrakis(diphenylphosphino)cyclobutane. Neither 1 nor the free diphosphine trans-dppen shows this reaction. In the case of 2 the photocycloaddition is slower than in 3. This difference can be explained by the shorter distance between the two aliphatic double bonds in 3 than in 2, but also different transition probabilities within ground and excited states of the used metals could be involved. Furthermore, variable-temperature 31P{1H} NMR spectroscopy of 2 or 3 reveals a negative activation entropy of 2 for the [2+2] photocycloaddition, but a positive of 3. The removal of chloride from 4 by precipitating AgCl with AgBF4, and subsequent treatment with 2,2′-bipyridine (bipy) or 1,10-phenanthroline (phen) leads to [Pt2(dppcb)(bipy)2](BF4)4 (5) and [Pt2(dppcb)(phen)2](BF4)4 (6), respectively. In an analogous reaction of 4 with PMe2Ph or PMePh2, [Pt2(dppcb)(PMe2Ph)4](BF4)4 (7) and [Pt2(dppcb)(PMePh2)4](BF4)4 (8) are formed. Complexes 1–8 show square–planar coordinations, where the compounds 4–8 have also been characterized by the above mentioned methods together with fast atom bombardment mass spectrometry (7, 8). The crystal structure of 4 reveals two conformations, which arise from an energetic competition between the sterical demands of dppcb and an ideal square–planar environment of Pt(II). The free tetraphosphine dppcb can be obtained easily from 4 by treatment with NaCN. It has been characterized fully by the above methods including 13C{1H} and 1H NMR spectroscopy. The X-ray structure analysis shows the pure MMMP-enantiomer in the solid crystal, which is therefore optically active. This chirality is induced by a conformation of dppcb, where all four PPh2 groups are non-equivalent. Variable-temperature 31P{1H} NMR spectroscopy of dppcb confirms this explanation, since the single signal at room temperature is split into two doublets at 183 K. The goal of this article is to demonstrate the facile production of a new tetradentate phosphine from a diphosphine precursor via Pt(II) used as a template.  相似文献   

18.
Addition of (Cp*2YH)2 (4) to 2-methyl-1,4-pentadiene produced the yttrium-alkyl-alkene chelate complex Cp*2YCH2CH2CH2C(CH3)=CH2 (2) in which a disubstituted alkene is complexed to the metal center. Evidence for coordination of the alkene unit of 2 comes from the 1H and 13C NMR chemical shifts of the vinyl units and from observation of nOe effects between Cp* protons and vinyl hydrogens. The disubstituted alkene ligand of 2 is weakly bound, and evidence for an equilibrium with substantial amounts of complex 3 with a free alkene was obtained from variable temperature 1H NMR spectroscopy.  相似文献   

19.
Under aerobic conditions the addition of (C2N5)2N(N[O]NO) · Na+(DEA/NO), S-nitroso-N-macetyl penicillamine and nitric oxide (NO)-saturated buffer, but not S-nitroso- -glutathione, to dopamine solutions resulted in dopamine o-semiquinone formation that was dependent on the formation of a NO/oxygen intermediate. High pressure liquid chromatography (HPLC) electrochemical analysis of dopamine demonstrated that the DEA/NO-induced oxidation of dopamine was abrogated in the presence of the antioxidants, ascorbate and glutathione. NO spontaneously released from DEA/NO decreased [3H]dopamine accumulation in primary cultures of mesencephalic neurons in a dose-dependent fashion. In contrast, [3H]γ-aminobutyric acid uptake by mesencephalic neurons tested under the same conditions was unchanged. When DEA/NO was added to incubation buffer that contained [3H]dopamine and the antioxidant, ascorbate or glutathione, [3H]dopamine uptake was also inhibited. These data excluded that oxidation of extracellular [3H]dopamine by the intermediates of the NO/O2 reaction could have caused this decrease. Instead, NO may have acted directly on a not yet identified target operative in the regulation of dopamine storage and release. Analysis of the rate constants for the NO reaction with ascorbate, glutathione and dopamine revealed that dopamine quinone formation was delayed by the presence of antioxidants. Since the formation of NO as well as neurotransmitter release are activated during ischemia reperfusion injury, it is possible that prolonged NO exposure could deplete antioxidants and facilitate the oxidation of dopamine and thereby cause neurotoxicity.  相似文献   

20.
The solution of [RhCl(PPh3)3] in acidic 1-ethyl-3-methylimidazolium chloroaluminate(III) ionic liquid (AlCl3 molar fraction, xAlCl3=0.67) was investigated by 1H and 31P{1H} NMR. One triphenyl phosphine is lost from the complex and is protonated in the acidic media, and cis-[Rh(PPh3)2ClX], (2), where X is probably [AlCl4], is formed. On, standing, 2 is converted to trans-[Rh(H)(PPh3)2X], (3). The reaction of 2 and H2 also produces trans-[Rh(H)(PPh3)2X], (3). 1H and 31P{1H} NMR support the suggestion that a weak ligand such as [AlCl4], present in solution may interact with the metal centre. When [RhCl(PPh3)3] is dissolved in CH2Cl2/AlCl3/HCl for comparison, two exchanging isomers of what is probably [RhH{(μ-Cl)2AlCl2}{(μ-Cl)AlCl3}(PPh3)2], (6) and (7), are formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号