首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-β-d-glucose from uridine-5′-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss.  相似文献   

2.
An improved method of fractionating the myoinositol esters of indoleacetic acid (IAA) from maize kernels by gas-liquid chromatography has been developed. Mass spectrometry was employed as an aid in identification of the esters. Maize kernels contain three groups of esters of IAA: (a) IAA myoinositols, (b) IAA myoinositol arabinosides, and (c) IAA myoinositol galactosides. Each group has three chromatographically distinguishable isomers. The glycosylinositols described are unique in that carbon 1 of the sugar is attached to the hydroxyl at C-5 of the myoinositol.  相似文献   

3.
The amounts and rates of metabolic turnover of the indolylic compounds in germinating kernels of sweet corn were determined. Knowledge of pool size and rate of pool turnover has permitted: (a) identification of indole-3-acetyl-myo-inositol as the major chemical form for transport of indole-3-acetic acid (IAA) from endosperm to shoot; (b) demonstration that the free IAA of the endosperm is turning over rapidly with a half-life of 3.2 hours; (c) identification of esters of IAA as the immediate precursors of IAA in the endosperm and shoot; (d) demonstration that neither tryptophan nor tryptamine is a major precursor of IAA for the seed or shoot; (e) identification of IAA-myo-inositol glycosides as precursors of IAA-myo-inositol.  相似文献   

4.
The first compound in the series of reactions leading to the ester conjugates of indole-3-acetic acid (IAA) in kernels of Zea mays sweet corn is the acyl alkyl acetal, 1-O-indol-3-ylacetyl-β-d-glucose (1-O-IAGlu). The enzyme catalyzing the synthesis of this compound is UDP-glucose:indol-3-ylacetate glucosyl-transferase (IAGlu synthase). The IAA moiety of the high energy compound 1-O-IAGlu may be enzymatically transferred to myo-inositol or to glycerol or the 1-O-IAGlu may be enzymatically hydrolyzed. Alternatively, nonenzymatic acyl migration may occur to yield the 2-O, 4-O, and 6-O esters of IAA and glucose. The 4-O and 6-O esters may then be enzymatically hydrolyzed to yield free IAA and glucose. This work reports new enzymatic activities, the transfer of IAA from 1-O-IAGlu to glycerol, and the enzymecatalyzed hydrolysis of 4-O- and 6-O-IAGlu. Data is also presented on the rate of non-enzymatic acyl migration of IAA from the 1-O to the 4-O and 6-O positions of glucose. We also report that enzymes catalyzing the synthesis of 1-O-IAGlu and the hydrolysis of 1-O, 4-O, and 6-O-IAGlu fractionate as a hormone metabolizing complex. The association of synthetic and hydrolytic capabilities in enzymes which cofractionate may have physiological significance.  相似文献   

5.
The contents of IAA and flavonoids (Fls) were monitored in developing anthers, in vitro growing pollen tubes, and in the in vivo pollen-pistil system of two petunia (Petunia hybrida L.) clones, self-compatible and self-incompatible. In both clones, the development of male gametophytes was accompanied by the increase in the IAA (from 10 to 60–70 ng/g fr wt) and Fls (from 2 to 20 mg/g fr wt) contents. In both clones, pollen grain germination was accompanied by a substantial (by 10–30%) increase in the IAA content during the first two hours and Fl content during the first hour. Treatments with IAA and Fls stimulated both in vitro pollen grain germination and pollen tube growth by 25–30%. Male gametophyte germination in vivo, on the pistil surface, was accompanied by the increase in the IAA content from 90 to 200 ng/g fr wt during 8 h, whereas the content of Fl increased from 2 to 3 mg/g fr wt during the first hour and was maintained later at this level. In the pollen-pistil system, IAA and Fls were distributed evenly in the tissues of stigma, style, and ovary. On the basis of data obtained, we concluded that Fls might be endogenous mediators of IAA transport, which is one of the principal regulators of male gametophyte growth and development in the progame phase of fertilization, but are not involved in the mechanism of gametophyte incompatibility.  相似文献   

6.
We have demonstrated the in vitro enzymatic synthesis of an ester of indole-3-acetic acid (IAA) and glucose and of IAA and myo-inositol by the following reaction sequence: lt]o| li]1) IAA + UDPG ? IAA-glucose +UDP li]2) IAA-glucose +myo-inositol → IAA-itmyo-inositol +glucose The enzymes were partially purified from extracts of immature kernels of Zea mays sweet corn and the two activities separated on a Sephadex G-150 column. Products were characterized, primarily, by comparison of their 70 eV mass spectra with those of authentic synthetic standards. To our knowledge this is the first example of enzymatically catalyzed acylation by a 1-O-acylsugar.  相似文献   

7.
We have studied the accumulation of peptidyl hydroxyproline in the pericarp of developing maize (Zea mays L., Golden cross Bantam sweet corn) kernels. Although this hydroxyproline accumulates throughout development, it is most soluble and its content per milligram dry weight greatest at midmaturation stages of development. Salt-soluble proteins containing this hydroxyproline from isolated cell walls of developing kernels were fractionated on a CsCl density gradient and on a Chromatofocusing column, resulting in the purification of an hydroxyproline-rich glycoprotein, PC-1. PC-1 is a basic protein of approximately 65 to 70 kilodaltons in molecular weight with an isoelectric point of at least 10.2 and a density of 1.38 to 1.39 in CsCl. Amino acid composition data indicate that it is rich in hydroxyproline, threonine, proline, lysine, and glycine. Its relation to dicot extensin is discussed.  相似文献   

8.
Indole-3-acetic acid (IAA) in highly purified extracts of rose achenes (Rosa rugosa var rubra) was quantified by means of ion-pair reversephase high performance liquid chromatography with spectrofluorimetric detection. Changes in IAA content were determined during a 14-week 4°C stratification, which leads to dormancy breakage, and during subsequent germination at 17°C. IAA was also determined in achenes stratified in parallel at 17°C, which does not induce release from dormancy. IAA decreased during the first 2 weeks of stratification both at 4°C and at 17°C. IAA remained low during the remaining 12 weeks of stratification at 4°C, whereas it continued to decrease in achenes kept at 17°C. An immediate increase in IAA during germination was followed by transients in the IAA level. The results suggest that IAA is without a regulating role in dormancy release although it seems to be involved in the germination process.  相似文献   

9.
The structures and the concentrations of all of the indolylic compounds that occur in the endosperm of the seeds of corn (Zea mays L.) are known. Thus, it should be possible to determine which, if any, of the indolylic compounds of the endosperm can be transported to the seedling in significant amounts and thus help identify the seed-auxin precursor of Cholodny (1935. Planta 23:289-312) and Skoog (1937. J. Gen. Physiol. 20:311-334). Of interest is the transport of tryptophan, indole-3-acetic acid (IAA), and the esters of IAA, which comprise 95% of the IAA compounds of the seed. We have shown that: (a) IAA can move from the endosperm to the shoot; (b) the rate of movement of IAA from endosperm to shoot is that of simple diffusion; (c) 98% of the transported IAA is converted into compounds other than IAA, or IAA esters, en route; (d) some of the IAA that has moved into the shoot has been esterified; (e) labeled tryptophan applied to the endosperm can be found as labeled IAA in the shoot; and (f) with certain assumptions concerning IAA turnover, the rate of movement of IAA and tryptophan-derived IAA from the endosperm to shoot is inadequate for shoot growth or to maintain IAA levels in the shoot.  相似文献   

10.
Effect of simazine on nitrate reductase activity in corn   总被引:5,自引:3,他引:2       下载免费PDF全文
The nutritional and environmental parameters required for eliciting increases in the nitrogen content and growth of corn (Zea mays L.) by non-toxic levels of simazine have been established. Corn seedlings with the endosperm removed 10 days after germination, proved to be a suitable test species. The addition of simazine to the root-zone area of corn plants grown under both sub-optimal temperatures and low nitrate levels, increased the nitrogen content and dry weight of the plants by 20 to 25%. This increase was found to be associated with an effect on nitrate reductase.  相似文献   

11.
12.
Auxin Biosynthesis during Seed Germination in Phaseolus vulgaris   总被引:1,自引:1,他引:0  
The relative roles of de novo biosynthesis of indoleacetic acid (IAA) and IAA conjugates stored in mature seeds (Phaseolus vulgaris L.) in supplying auxin to germinating bean seedlings were studied. Using 2H oxide and 2,4,5,6,7-[2H]l-tryptophan as tracers of IAA synthesis, we have shown that de novo biosynthesis of IAA, primarily from tryptophan, is an important source of auxin for young bean seedlings. New synthesis of IAA was detected as early as the second day of germination, at which time the seedlings began to accumulate fresh weight intensively and the total content of free IAA began to increase steadily. IAA conjugates that accumulate in large amounts in cotyledons of mature seeds may thus be considered to be only one of the possible sources of IAA required for the growth of bean seedlings.  相似文献   

13.
14.
Indole-3-acetyl-myo-inositol esters constitute 30% of the low molecular weight derivatives of indole-3-acetic acid (IAA) in seeds of Zea mays. [14C]Indole-3-acetyl-myo-inositol was applied to a cut in the endosperm of the seed and found to be transported from endosperm to shoot at 400 times the rate of transport of free IAA. The rate of transport of indole-3-acetyl-myo-inositol from endosperm to shoot was 6.3 picomoles per shoot per hour and thus adequate to serve as the seed auxin precursor for the free IAA diffusing downward from the shoot tip. Indole-3-acetyl-myo-inositol is the first seed auxin precursor to be identified.  相似文献   

15.
In plants, the effective mobilization of seed nutrient reserves is crucial during germination and for seedling establishment. The Arabidopsis H+-PPase-loss-of-function fugu5 mutants exhibit a reduced number of cells in the cotyledons. This leads to enhanced post-mitotic cell expansion, also known as compensated cell enlargement (CCE). While decreased cell numbers have been ascribed to reduced gluconeogenesis from triacylglycerol, the molecular mechanisms underlying CCE remain ill-known. Given the role of indole 3-butyric acid (IBA) in cotyledon development, and because CCE in fugu5 is specifically and completely cancelled by ech2, which shows defective IBA-to-indoleacetic acid (IAA) conversion, IBA has emerged as a potential regulator of CCE. Here, to further illuminate the regulatory role of IBA in CCE, we used a series of high-order mutants that harbored a specific defect in IBA-to-IAA conversion, IBA efflux, IAA signaling, or vacuolar type H+-ATPase (V-ATPase) activity and analyzed the genetic interaction with fugu5–1. We found that while CCE in fugu5 was promoted by IBA, defects in IBA-to-IAA conversion, IAA response, or the V-ATPase activity alone cancelled CCE. Consistently, endogenous IAA in fugu5 reached a level 2.2-fold higher than the WT in 1-week-old seedlings. Finally, the above findings were validated in icl–2, mls–2, pck1–2 and ibr10 mutants, in which CCE was triggered by low sugar contents. This provides a scenario in which following seed germination, the low-sugar-state triggers IAA synthesis, leading to CCE through the activation of the V-ATPase. These findings illustrate how fine-tuning cell and organ size regulation depend on interplays between metabolism and IAA levels in plants.  相似文献   

16.
The ability of pollen to germinate prior to anthesis was tested using Easter lily (Lilium longiflorum L.) and corn (Zea mays L.). Lily pollen normally dries to a low moisture content between anthesis and pollination while corn does not. The corn pollen germinated well (about 73%) when removed from anthers 1 day before anthesis and placed on culture medium. The lily pollen germinated poorly (0 to 5%) when harvested one to six days before anthesis. However, the lily pollen harvested one or two days before anthesis gave greatly improved germination (about 55%) after it was dried to a low moisture content. The results indicate that an internal control prevents premature germination of lily pollen and that drying is the final stage of pollen maturation. A different sort of regulatory mechanism must operate to prevent premature germination of corn pollen.  相似文献   

17.
The content of indoleacetic acid (IAA) was determined in dry and germinating seeds of French bean (Phaseolus vulgaris), sugar maize (Zea mays), and Scots pine (Pinus silvestris). IAA was found in both the dry and the soaked seeds of the three species examined. The amount of IAA per gram fresh weight was extremely different in the three species whereas the variation between different harvests of the same species was small. Maize contained the highest level of IAA and bean the smallest. The time of imbibition was of decisive importance for the level of IAA. In all three species the content of IAA increased considerably during the initial 4 hours of swelling. The highest level of IAA was found in seeds that had swelled for 24 to 48 hours, during which period the radicles began to emerge from the seed coat. Later, during the period of rapid root growth, the content of IAA declined.  相似文献   

18.

Background and Aims

Plant growth regulators play an important role in seed germination. However, much of the current knowledge about their function during seed germination was obtained using orthodox seeds as model systems, and there is a paucity of information about the role of plant growth regulators during germination of recalcitrant seeds. In the present work, two endangered woody species with recalcitrant seeds, Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm), native to the Atlantic Rain Forest, Brazil, were used to study the mobilization of polyamines (PAs), indole-acetic acid (IAA) and abscisic acid (ABA) during seed germination.

Methods

Data were sampled from embryos of O. odorifera and embryos and megagametophytes of A. angustifolia throughout the germination process. Biochemical analyses were carried out in HPLC.

Key Results

During seed germination, an increase in the (Spd + Spm) : Put ratio was recorded in embryos in both species. An increase in IAA and PA levels was also observed during seed germination in both embryos, while ABA levels showed a decrease in O. odorifera and an increase in A. angustifolia embryos throughout the period studied.

Conclusions

The (Spd + Spm) : Put ratio could be used as a marker for germination completion. The increase in IAA levels, prior to germination, could be associated with variations in PA content. The ABA mobilization observed in the embryos could represent a greater resistance to this hormone in recalcitrant seeds, in comparison to orthodox seeds, opening a new perspective for studies on the effects of this regulator in recalcitrant seeds. The gymnosperm seed, though without a connective tissue between megagametophyte and embryo, seems to be able to maintain communication between the tissues, based on the likely transport of plant growth regulators.  相似文献   

19.
Riov J  Dror N  Goren R 《Plant physiology》1982,70(5):1265-1270
The effect of ethylene on [14C]indole-3-acetic acid (IAA) metabolism was investigated in defoliation sensitive leaf tissues of citrus (Citrus sinensis) and resistant leaf tissues of eucalyptus (Eucalyptus camaldulensis). IAA metabolites were fractionated into 80% ethanol-soluble, H2O-soluble, NaOH-soluble, and insoluble components. In citrus, pretreatment with 25 microliters per liter ethylene for 24 hours significantly increased the amount of ethanol- and H2O-extractable conjugates during the first hour of incubation in [14C]IAA and increased 3- to 4-fold the formation of NaOH-extractable conjugates during the entire 6-hour incubation period. However, induction of the IAA-aspartate conjugation system was inhibited by ethylene. In eucalyptus, ethylene pretreatment only slightly stimulated the formation of IAA metabolites. Increased formation of ethanol-extractable conjugates in ethylene-pretreated eucalyptus tissues was observed only after 6 hours of incubation. Chromatographic analysis indicated that the ethanol and H2O extracts of both species contained various low molecular weight conjugates, whereas in citrus leaf tissues high molecular weight conjugates accounted for most of the greater radioactivity detected in the NaOH extracts as a result of ethylene-pretreatment. It is suggested that ethylene may reduce the level of endogenous IAA in citrus leaf tissues by stimulating IAA conjugation.  相似文献   

20.
Cellulose with properties suitable for films and absorbents has been extracted from corn kernels and DDGS. Although DDGS is an inexpensive and abundant co-product that contains valuable components, it is currently not being used for industrial applications. DDGS contains about 9–16% cellulose by weight but the properties of cellulose in DDGS or even in corn kernels such as degree of polymerization (DP), morphology and crystallinity of cellulose have not been studied. In this study, cellulose was extracted from corn kernels and DDGS using alkali and enzymes. A minimum crude cellulose yield of 1.7% and 7.2% with cellulose content of 72% and 81% was obtained from corn kernels and DDGS, respectively. The solids obtained after extraction with cellulose contents ranging from 35% to 81% were made into films with tensile strength and elongation up to 42.5 MPa and 3.3%, respectively, using water and without any additional chemicals. The cellulose obtained holds water up to 9 times its weight and could therefore be used as an absorbent. The cellulose could also be used as paper, composites, lubricant and nutritional supplement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号