首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was performed in order to establish whether angiotensin II (ANG II) and/or insulin-induced hypoglycemia exert their oxytocin (OT)-releasing effects by interacting with a GABAergic pathway. For this purpose, in 14 normal men the OT responses to ANG II (infusion for 60 min of successively increasing doses of 4, 8 and 16 ng/kg.min, each dose for 20 min; n = 7) or to insulin (0.15 IU/kg)-induced hypoglycemia (n = 7) were evaluated with or without previous treatment with the GABAergic agonist sodium valproate (600 mg in 3 divided doses, p.o.). In all subjects insulin produced a similar hypoglycemic response regardless of sodium valproate administration. Both ANG II and insulin-induced hypoglycemia produced significant increases in plasma OT levels (mean peaks were about 60% higher than baseline). The pretreatment with sodium valproate was unable to change the OT response to hypoglycemia, whereas it abolished the ANG-II-induced OT rise. These data suggest that in man a GABAergic mechanism is involved in the regulation of the OT response to ANG II, but not in the mediation of poglycemia-induced OT release.  相似文献   

2.
The responses to sublingual nifedipine (20 mg) and placebo were compared in normal subjects during two studies on cycle ergometer [progressive exercise and constant work-load exercise at approximately 60% of maximal O2 consumption (VO2max)]. The use of nifedipine did not modify maximal power, ventilation (VE), VO2, and heart rate (HR) at the end of the multistage progressive exercise (30-W increments every 3 min). Over the 45 min of the constant-load exercise and the ensuing 30-min recovery we observed with nifedipine compared with placebo 1) no differences in VO2, VE, respiratory exchange ratio, and systolic arterial blood pressure; 2) a higher HR (P less than 0.001) and lower diastolic arterial blood pressure (P less than 0.01); 3) a greater and more prolonged rise in norepinephrine (P less than 0.01) and growth hormone (P less than 0.001); 4) no significant differences in epinephrine and insulin and a lesser increase in glucagon during recovery (P less than 0.01); and 5) a lesser fall in blood glucose (P less than 0.01) and greater increase in acetoacetate (P less than 0.001), beta-hydroxybutyrate (P less than 0.05), and blood lactate (P less than 0.001). Our data do not support the hypothesis that nifedipine reduces hormonal secretions in vivo and are best explained by an enhanced secretion of catecholamines compensating for the primary vasodilator effect of nifedipine.  相似文献   

3.
Six men were studied during exercise to exhaustion on a cycle ergometer at 73% of VO2max following ingestion of glycerol, glucose or placebo. Five of the subjects exercised for longer on the glucose trial compared to the placebo trial (p less than 0.1; 108.8 vs 95.9 min). Exercise time to exhaustion on the glucose trial was longer (p less than 0.01) than on the glycerol trial (86.0 min). No difference in performance was found between the glycerol and placebo trials. The ingestion of glucose (lg X kg-1 body weight) 45 min before exercise produced a 50% rise in blood glucose and a 3-fold rise in plasma insulin at zero min of exercise. Total carbohydrate oxidation was increased by 26% compared to placebo and none of the subjects exhibited a fall in blood glucose below 4 mmol X 1-1 during the exercise. The ingestion of glycerol (lg X kg-1 body weight) 45 min before exercise produced a 340-fold increase in blood glycerol concentration at zero min of exercise, but did not affect resting blood glucose or plasma insulin levels; blood glucose levels were up to 14% higher (p less than 0.05) in the later stages of exercise and at exhaustion compared to the placebo or glucose trials. Both glycerol and glucose feedings lowered the magnitude of the rise in plasma FFA during exercise compared to placebo. Levels of blood lactate and alanine during exercise were not different on the 3 dietary treatments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We administered two different growth hormone-releasing hormones (GHRH) to 20 short, prepubertal children who had spontaneous secretion of growth hormone (GH), assessed from 24-hour GH secretion profiles (72 sampling periods of 20 min). We compared one i.v. injection of 1 microgram/kg of GHRH 1-40 with that of GHRH 1-29 regarding serum concentrations of GH, prolactin, luteinizing hormone, follicle-stimulating hormone and IGF-I. The children were allocated to two groups without statistical randomization. Both groups were given both peptides, with at least 1 week in between. The first group started with GHRH 1-40, the other with GHRH 1-29. The peptides both induced an increased serum concentration of GH of the same magnitude: mean maximal peak of 89 +/- 12 mU/l after GHRH 1-40 and 94 +/- 10 mU/l after GHRH 1-29 (n.s.). The mean difference in maximum serum GH concentration in each child after injection was 52 +/- 9 mU/l, range 1-153 mU/l. GHRH 1-29 also induced a short-term, small increase in the concentrations of prolactin (p less than 0.05), luteinizing hormone (p less than 0.01) and follicle-stimulating hormone (p less than 0.05). We conclude that the shorter sequence GHRH 1-29, when given in a dose of 1 microgram/kg, gives a rise in serum concentration of GH similar to that after the native form GHRH 1-40.  相似文献   

5.
Plasma concentrations of corticotropin releasing hormone (CRH) and the serum concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone, adrenocorticotropic hormone (ACTH) and cortisol were measured in seven physically active males after acute exercise on a treadmill using the Bruce protocol. Measurements were made in the basal pre-exercise state, immediately after exercise, and at 30-min intervals for 3 h after exercise. Serum LH concentrations declined following exercise reaching nadir values between 60 and 180 min after exercise (90 min post exercise in the group). The nadir values in individual volunteers were significantly lower than both the baseline and post-exercise levels. This fall in serum LH concentration appeared to follow a slight but significant elevation of the plasma concentration of CRH which reached peak levels when measured immediately post exercise. Plasma ACTH concentrations paralleled the rise in CRH, but fell to undetectable levels of below 13.8 nmol.l-1 (less than 5 ng.l-1) 60 min after exercise. Plasma cortisol concentrations peaked approximately 30 min after the rise in ACTH, after which they gradually declined to baseline levels. Plasma testosterone concentrations paralleled the concentrations of LH. The data suggest that CRH, on the basis of its previously described gonadotropin-depressant property, may be the hormone involved in the exercise-mediated decline in serum LH. Alternatively, some as yet unidentified factor(s), may be involved in producing the altered concentrations of both LH and CRH.  相似文献   

6.
Beta-adrenoceptor stimulation in vivo shifts potassium into the cells. To examine whether human erythrocytes participate in this process, we measured, along with serum or plasma potassium, the concentrations of potassium and sodium in erythrocytes. Beta-adrenoceptor stimulation was obtained by infusion of either fenoterol or hexoprenaline into 6 volunteers at rest or by endogenous amines provoked in 14 volunteers during ergometric exercise. Metabolic effects were followed at rest on serum insulin, C-peptide, and growth hormone levels, and during exercise on pH on lactate concentration in blood. The potassium concentration (mean +/- S.E.M.) dropped (p less than 0.01) in serum from 4.64 +/- 0.37 to 3.19 +/- 0.43 mmol x l-1 in the first hour at rest and in plasma from 5.70 +/- 0.93 to 4.63 +/- 0.45 in 90 sec directly after exercise. The concentration of erythrocyte sodium dropped (p less than 0.001) from 9.68 +/- 0.73 to 8.81 +/- 0.62 mmol x l-1 in cells and from 9.62 +/- 1.16 to 8.55 +/- 1.24 during exercise for 90 s, respectively. Changes in the concentration ratio of cellular sodium to potassium confirmed this sodium shift. An increased sodium transport in erythrocytes due to beta-adrenoceptor stimulation in vivo appears to complement a shift of serum potassium into the cells and may be mediated by the membrane-bound sodium, potassium ATPase.  相似文献   

7.
Hormone and substrate responses to mild and heavy treadmill exercise were compared in women who used oral contraceptives (OC group; n = 7) and in normally menstruating women (control group; n = 8). Venous blood samples were obtained before exercise (-5 min), during exercise (15, 30, 45, and 60 min), and 30 min after exercise. All samples were analyzed for glucose, lactate, free fatty acids (FFA), glycerol, follicle-stimulating hormone (FSH), luteinizing hormone (LH), human growth hormone (hGH), cortisol, insulin, estradiol (E2), and progesterone (P). Substrate patterns during exercise were not altered by the phase of the menstrual cycle or OC usage. However, in the OC group the FFA concentrations were consistently higher during mild exercise and the glucose concentrations were lower at rest and during exercise than in the control group (P less than 0.05). No differences in lactate or glycerol responses were observed between the groups (P greater than 0.05). The responses of insulin and hGH to exercise were not related to the OC use per se but rather to the steroid status, either endogenous or exogenous. Specifically, during the steroid phases (OC use phase and luteal phase) 1) insulin concentrations were not quite as markedly reduced (i.e., 12% higher when luteal phase and OC usage phase data were combined; P less than 0.05), and 2) hGH concentrations at rest and during light exercise were higher in the OC group during the OC use phase (P less than 0.05). LH patterns were not affected by exercise (P greater than 0.05), but a slight decrease was found in FSH (P less than 0.05). Increments in P and E2 were observed in the control group in both the follicular and luteal phase (P less than 0.05), but much greater increments in P occurred in the luteal phase than in the follicular phase (P less than 0.05). In contrast to the control group, no increments in P, E2, or cortisol occurred in the OC users during exercise (P greater than 0.05). Therefore the new observations in this study are that 1) insulin and growth hormone respond in a complex manner during exercise with either the phase of the menstrual cycle or the phases of OC use and disuse and 2) the steroid concentrations (P, E2, cortisol) are increased in the controls but not in the OC users during exercise. The latter point suggests that normal steroid increments are due to an increased rate of secretion rather than a decrease in the hepatic clearance of these steroids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
In two groups of healthy men aged 20-22 years the left ventricular systolic time intervals were evaluated by the method of Weissler et al. during frequently repeated workloads and restitution. Each exercise was carried out on a Zimmerman cycle ergometer during 10 minutes, and was repeated five times at 50-minutes intervals from 8.00 o'clock a.m. Group I (15 subjects) performed the exercise at a stable workload which produced during the first exercise heart rate acceleration to 170/min, but gave a successive further rise in the heart rate during consecutive exercises. Group II (11 subjects) performed all exercises to a stable rise in heart rate to 170/min with decreasing workloads. It was found that successive exercises caused in both groups a similar decrease of the left ventricular ejection time index (LVETI), pre-ejection period (PEP), isovolumetric contraction time (ICT), and decrease of the PEP/LVET index (p less than 0.05). Each successive exercise began with higher values of LVETI, PEP, ICT and PEP/LVET than the first one. No significant differences were found in the values of left ventricular systolic time intervals in both groups (p greater than 0.05). The duration of restitution of normal values of the left ventricular systolic time intervals after successive exercises was not changing but the tolerance of these exercises measured by heart rate increase and work performed decreased successively.  相似文献   

9.
The plasma beta-endorphin (beta-EP) and beta-lipotropin (beta-LPH) response to acute exercise and the relationship of these opioid peptides to basal and luteinizing hormone-releasing hormone (LRH)-stimulated luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion was studied in eight normal male volunteers. Acute exercise resulted in a rise in plasma beta-LPH levels that returned to base line when measured 60 min after exercise. Plasma beta-EP levels did not demonstrate any rise when measured immediately after 20 min of exercise or at 60 min after exercise. Serum LH concentrations in individual volunteers declined to nadir values 60-180 min after exercise after which they showed a rebound to levels higher than the preexercise values in three of five volunteers in whom nadir LH levels were attained before the final (180 min) measurement. Serum FSH concentrations were unaltered by exercise. Acute exercise similarly did not alter the LH/FSH response to exogenous LRH stimulation. Pretreatment of the volunteers with the narcotic antagonist, naloxone, failed to alter the postexercise or LRH-stimulated LH and FSH release. The data suggest that beta-EP does not exert a suppressive effect on LH secretion after acute exercise in normal human males. Whether the suppression of LH secretion after acute exercise in unconditioned males is due to factor(s) cosecreted with beta-LPH, an increase in brain beta-EP or to alternate mechanisms such as alteration in central dopaminergic or GABAergic tone remains to be established.  相似文献   

10.
BACKGROUND: Strenuous exercise was reported to involve the alteration in the release of some "stress" hormones such as growth hormone (GH), cortisol, catecholamines and appropriate adjustment of energy metabolism but the relative contribution of these hormones to metabolic response, to cycling exercise performed at different muscle shortening velocities, has not been clarified. AIMS: The purpose of this experiment was to assess the effect of applying different pedalling rates during a prolonged incremental cycling exercise test on the changes in the plasma levels of growth hormone, cortisol, insulin, glucagon and leptin in humans. Material and METHODS: Fifteen healthy non-smoking men (means +/- SD: age 22.9 +/- 2.4 years; body mass 71.9 +/- 8.2 kg; height 178 +/- 6 cm; with VO2max of 3.896 +/- 0.544 1 x min(-1), assessed in laboratory tests, were subjects in this study. The subjects performed in two different days a prolonged incremental exercise tests at two different pedalling rates, one of them at 60 and another at 120 rev x min(-1). During this tests the power output has increased by 30 W every 6 minutes. The tests were stopped when the subject reached about 70 % of the VO2max. RESULTS AND CONCLUSIONS: We have found that choosing slow or fast pedalling rates (60 or 120 rev min(-1)), while generating the same external mechanical power output, had no effect on the pattern of changes in plasma cortisol, insulin, glucagon, glucose and leptin concentrations. But, generation of the same external mechanical power output at 120 rev min(-1) causes more stepper increase (p < 0.01) in the plasma growth hormone concentration [GH]pl and plasma lactate concentrations [La]pl when compared to that observed during cycling at 60 rev x min(-1). We have also found that the onset of a significant increase in [GH]pl during cycling at 60 rev x min(-1) was not accompanied by significant increase in [La]pl. While during cycling at 120 rev x min(-1) the onset of a significant increase in [La]pl occurred without increase in [GH]pl, but with continuation of exercise when plasma [La]pl increased, there was also a parallel rise in plasma [GH]pl, as reported before. This results indicates that the increase in [GH]pl during exercise is not closely related to the increase in [La]pl.  相似文献   

11.
In order to investigate the effect of fenfluramine on hormonal and metabolic changes with exercise, five normal volunteers have been studied during and after 20 minutes of steady exercise on a bicycle ergometer after injection of fenfluramine (20 mg intravenously). Fenfluramine abolished the rise of plasma human growth hormone (HGH) which occurred in control investigations. Fenfluramine also affected plasma insulin, blood glucose, and ketone body levels.The acute effect of fenfluramine on the release of growth hormone was examined further by studying its effect in patients with acromegaly. A marked depression of growth hormone occurred both at rest and with exercise. These observations indicate that fenfluramine has a direct effect on pathways controlling growth hormone release. We also suggest that this action may have practical use in the medical treatment of acromegaly.  相似文献   

12.
This study examined the involvement of the hormones aldosterone and prolactin in sweat gland function during heat acclimatization. Two groups of male subjects (n = 8) were tested - one receiving a placebo (control), the other receiving bromocriptine. Both groups performed cycle ergometer exercise at 50% of maximal oxygen uptake over 10 consecutive days in an environmental chamber maintained at 39 degrees C and 30% relative humidity. Duration of exercise was 90 min on days 2-4 and 6-9, and 45 min on test days 1, 5 and 10. Electrolyte concentrations were determined by total body washdown. Prolactin increased (p less than 0.001) during exercise on day 1 in the control group but not on days 5 and 10. In contrast, prolactin was suppressed by bromocriptine and did not rise in response to exercise or heat exposure. Plasma aldosterone increased during exercise in both groups, showing no differences between groups. The sodium concentration in sweat decreased significantly (p less than 0.05) in the control group from day 1 to 10 but was unchanged in the treatment group. These data suggest that acclimatization-related changes in sweat gland function may be attenuated by increases in central dopaminergic activity and implicate prolactin in control of sweat gland function.  相似文献   

13.
The effects of euhydration (Eh) and light (Dh1) and moderate (Dh2) dehydrations on plasma prolactin (PRL) levels were studied in 5 young male volunteers at rest and during exercise to exhaustion (50% of VO2max) in a warm environment (Tdb = 35 degrees C, rh = 20-30%). Light and moderate dehydrations (loss of 1.1 and 1.8% body respectively) were obtained before exercise by controlled hyperthermia. Compared to Eh, time for exhaustion was reduced in Dh1 and Dh2 (p less than 0.01) and rectal temperature (Tre) rose faster in Dh2 (p less than 0.05). Both venous plasma PRL and norepinephrine (NE) increased during exercise at any hydration level (p less than 0.05). Plasma PRL reached higher values after 40 and 60 min in Dh2 and Dh1 (p less than 0.05). Plasma NE values were higher in Dh2 at rest and at the 40th min during exercise (p less than 0.05). Plasma PRL was linearly correlated to Tre and plasma NE (p less than 0.001) but unrelated to plasma volume variation and osmolality. Our results provide further evidence for the major effect of body temperature in exercise-induced PRL changes. Moreover, the plasma PRL-NE relationship suggests that these changes may result from central noradrenergic activation.  相似文献   

14.
Effect of endurance training on gross energy expenditure during exercise   总被引:1,自引:0,他引:1  
We compared the effect of endurance exercise training on gross energy expenditure (GEE) during steady-state exercise in 20 younger men (31.2 +/- 0.6 years) and 20 middle-aged men (49.2 +/- 1.1 years). The subjects trained for eight months. The training program consisted of three 45-min walking and jogging exercise sessions per week at an intensity of approximately 60-85% of the heart rate at peak VO2. We administered bicycle ergometer tests at 0, 4, and 8 months into training. Participants exercised at a power output of 100 W for 10 min using a pedaling frequency of 50 rpm. We determined GEE (kcal/min) by measuring the oxygen consumption and respiratory exchange ratio. We found a significant reduction (p less than 0.05) in GEE (0.7-1.3 kcal/min) following 4 months of endurance training in both age groups, with a further reduction (p less than 0.05) noted in only the middle-aged group at month 8. We found no difference (p greater than 0.05) in GEE between the younger and middle-aged men. We conclude that chronic exercise may modify GEE during a submaximal exercise bout and that this adaptation is similar in magnitude in younger and middle-aged men.  相似文献   

15.
The effects of 30 min of exercise (74.1 +/- 3.0% (VO2), on the responses of progesterone (P), estradiol (E2), follicle stimulating hormone (FSH), and luteinizing hormone (LH) were investigated in 10 women. With such exercise significant increments occurred in P (37.6 +/- 9.5%) and E2 (13.5 +/- 7.5%) (P less than 0.05), whereas no changes were observed in FSH and LH (p greater than 0.05). Exercise in the luteal phase and during menses provoked similar changes in P, but E2 concentrations remained unchanged when exercise occurred during menses (p greater than 0.05). With 8-11 weeks of training the menstrual cycles were quite irregular and retesting of subjects in the same phase of the cycle was not possible. Yet, when subjects were retested after training, no changes occurred in P, E2 or LH (p greater than 0.05) but a decrement did occur in FSH (p less than 0.10). Thus, heavy exercise in untrained subjects provokes significant increments in ovarian hormones, whereas no such increments are observed in trained subjects exercising at the same absolute workload.  相似文献   

16.
Growth hormone (GH) and lactic acid levels were measured in five normal males before, during and after two different types of exercise of nearly equal total duration and work expenditure. Exercise I (aerobic) consisted of continuous cycling at 100 W for 20 min. Exercise II (anaerobic) was intermittent cycling for one minute at 285 W followed by two minutes of rest, this cycle being repeated seven times. Significant differences (P less than 0.01) were observed in lactic acid levels at the end of exercise protocols (20 min) between the aerobic (I) and anaerobic (II) exercises (1.96 +/- 0.33 mM X 1(-1) vs 9.22 +/- 0.41 mM X 1(-1), respectively). GH levels were higher in anaerobic exercise (II) than in aerobic (I) at the end of the exercise (20 min) (2.65 +/- 0.95 micrograms X 1(-1) vs 0.8 +/- 0.4 micrograms X 1(-1); P less than 0.10) and into the recovery period (30 min) (7.25 +/- 6.20 micrograms X 1(-1) vs 2.5 +/- 2.9 micrograms X 1(-1); P less than 0.05, respectively).  相似文献   

17.
The effects of a growth hormone releasing factor, human pancreatic growth hormone releasing factor-44 (hpGRF-44), on growth hormone (GH) secretion in calves, heifers and cows were studied. A single intravenous (iv) injection of 0.1, 0.25, 0.5 or 1.0 microgram of synthetic hpGRF-44 per kg of body weight (bw) in calves significantly elevated the circulating GH level within 2-5 min, while no increase in plasma GH was observed in saline injected control calves. The plasma GH level increased proportionally to the log dose of hpGRF-44, and reached a peak at 5-10 min (p less than 0.01). Subcutaneous injection of hpGRF-44 also elevated the plasma GH level, but the peak value at 15 min was 37% of that of iv injection (p less than 0.05). Intravenous injection of 0.25 microgram of hpGRF-44 per kg of bw to female calves, heifers, and cows significantly elevated mean the GH levels from 8.5, 2.3, and 1.6 ng/ml at 0 time to peak values of 97, 26, and 11.6 ng/ml, respectively (p less than 0.01). The plasma GH response and basal level in calves were significantly higher than those of heifers or cows (p less than 0.025). The plasma GH response to hpGRF-44 as well as the basal level decreased with advancing age. The plasma GH response to hpGRF-44 and basal GH in male calves were significantly greater than those in female calves (p less than 0.001). These results indicate that synthetic hpGRF-44 is a potent secretogogue for bovine GH, and suggest its usefulness in the assessment of GH secretion and reserve in cattle.  相似文献   

18.
Sister-chromatid exchange (SCE) and chromosome aberrations have been studied in peripheral lymphocytes of 20 epileptic children treated in monotherapy with valproic acid (VPA) for 6-52 months and in 2 matched control groups. The frequencies of SCE in the VPA-treated epileptic children were significantly higher than in the 2 control groups (p less than 0.01); rates of chromosome aberrations were slightly higher but not significantly different from the 2 control groups. We also examined SCE in 10 epileptic children before and after they took sodium valproate for 6-7 months; there was a statistically significant change in SCE following VPA. 9 normal children whose lymphocytes were exposed in vitro to sodium valproate (5-20 micrograms/ml) showed a significant increase in SCE.  相似文献   

19.
A multistage exercise test was carried out in normotensive subjects with normotensive parents (controls; n = 12), and 32 offspring of essential hypertensive patients that were normotensive (NTO; n = 20) or borderline hypertensive (BHO; n = 12) The groups were comparable as to age, weight and working capacity. Changes in sympathetic nervous activity were determined by measurements of plasma noradrenaline. The initial rise in noradrenaline levels during the exercise test was proportional to the increase in work load until the noradrenaline concentration rose sharply to levels more than 1000 pg/ml above baseline levels. The work load immediately prior to the steep rise in plasma noradrenaline (sympathetic threshold level: STL) is considered to represent the point from which anaerobic energy-yielding processes play an increasingly greater role as the work load increases. The initial increase in plasma noradrenaline until STL was significantly higher in both the NTO (p less than 0.02) and BHO (p less than 0.005) compared to the control group. The absolute noradrenaline level at STL and the increase in noradrenaline from baseline to STL were significantly higher in the BHO group (p less than 0.02, p less than 0.005). No significant differences between the groups were found when comparing noradrenaline levels at rest or at absolute or relative work loads. The systolic blood pressure response during the exercise test was significantly more pronounced in the BHO group (p less than 0.05) compared to the controls and the NTO group.  相似文献   

20.
Reports of plasma beta-endorphin (B-EN) levels in response to submaximal exercise have been highly disparate. Variations in experimental design have complicated interpretation of previous research. The present study was designed to determine whether a sequential change in plasma beta-endorphin (B-EN), corticotropin (ACTH), and cortisol levels occurs in response to a 30-min submaximal run. Twenty-three subjects were divided into four groups: male runners, female runners, sedentary males and sedentary females. Subjects ran on a treadmill at 80% of previously determined maximum heart rate. Five plasma samples were obtained through an indwelling catheter before exercise (-30 and 0 min), at 15 and 30 min of exercise, and after 30 minutes of recovery. The run resulted in no rise in B-EN, ACTH, and cortisol despite an elevated rectal temperature. B-EN values were significantly higher in males than in females (p less than 0.01). No sex or training differences were seen with respect to change of hormone concentrations over the course of the run. Three male runners developed symptoms of vasovagal syncope after the catheter placement and had high initial B-EN, ACTH, and cortisol concentrations which decreased throughout the run. These data indicate that gender and training do not affect ACTH and cortisol concentrations before, during, and after 30 min of treadmill running at 80% of maximum heart rate, whereas B-EN concentrations are higher in males under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号