首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biotechnology needs to explore the capacity of different organisms to overproduce proteins of interest at low cost. In this paper, we show that Streptomyces lividans is a suitable host for the expression of Thermus thermophilus genes and report the overproduction of the corresponding proteins. This capacity was corroborated after cloning the genes corresponding to an alkaline phosphatase (a periplasmic enzyme in T. thermophilus) and that corresponding to a beta-glycosidase (an intracellular enzyme) in Escherichia coli and in S. lividans. Comparison of the production in both hosts revealed that the expression of active protein achieved in S. lividans was much higher than in E. coli, especially in the case of the periplasmic enzyme. In fact, the native signal peptide of the T. thermophilus phosphatase was functional in S. lividans, being processed at the same peptide bond in both organisms, allowing the overproduction and secretion of this protein to the S. lividans culture supernatant. As in E. coli, the thermostability of the expressed proteins allowed a huge purification factor upon thermal denaturation and precipitation of the host proteins. We conclude that S. lividans is a very efficient and industry-friendly host for the expression of thermophilic proteins from Thermus spp.  相似文献   

2.
An actinomycetes expression vector (pIBR25) was constructed and applied to express a gene from the kanamycin biosynthetic gene cluster encoding 2-deoxy-scyllo-inosose synthase (kanA) in Streptomyces lividans TK24. The expression of kanA in pIBR25 transformants reached a maximum after 72 h of culture. The plasmid pIBR25 showed better expression than pSET152, and resulted in the formation of insoluble KanA when it was expressed in Escherichia coli. This strategy thus provides a valuable tool for expressing aminoglycoside-aminocyclitols (AmAcs) biosynthetic genes in Streptomyces spp.  相似文献   

3.
The structural gene for sphingomyelinase (SMase) from Streptomyces griseocarneus, was introduced into Streptomyces lividans using a shuttle vector, pUC702, for Escherichia coli/S. lividans. High-level secretory production of SMase was achieved using the promoter, signal sequence and terminator regions of phospholipase D from Streptoverticillium cinnamoneum. The transformant constitutively expressed a high specific activity of SMase extracellularly during batch culture. Maximum SMase activity (555 ± 114 U/mg protein) was with 1.75 M MgCl2 which was about 50-fold more than that with 10 mM MgCl2.  相似文献   

4.

Background  

Streptokinase (SK) is a potent plasminogen activator with widespread clinical use as a thrombolytic agent. It is naturally secreted by several strains of beta-haemolytic streptococci. The low yields obtained in SK production, lack of developed gene transfer methodology and the pathogenesis of its natural host have been the principal reasons to search for a recombinant source for this important therapeutic protein. We report here the expression and secretion of SK by the Gram-positive bacterium Streptomyces lividans. The structural gene encoding SK was fused to the Streptomyces venezuelae CBS762.70 subtilisin inhibitor (vsi) signal sequence or to the Streptomyces lividans xylanase C (xlnC) signal sequence. The native Vsi protein is translocated via the Sec pathway while the native XlnC protein uses the twin-arginine translocation (Tat) pathway.  相似文献   

5.
6.
An N-acetylglucosaminidase produced by Streptomyces cerradoensis was partially purified giving, by SDS-PAGE analysis, two main protein bands with Mr of 58.9 and 56.4 kDa. The Km and Vmax values for the enzyme using p-nitrophenyl-β-N-acetylglucosaminide as substrate were of 0.13 mM and 1.95 U mg−1 protein, respectively. The enzyme was optimally activity at pH 5.5 and at 50 °C when assayed over 10 min. Enzyme activity was strongly inhibited by Cu2+ and Hg2+ at 10 mM, and was specific to substrates containing acetamide groups such as p-nitrophenyl-β-N-acetylglucosaminide and p-nitrophenyl-β-D-N,N′-diacetylchitobiose.  相似文献   

7.
Multidrug resistance (MDR) systems are ubiquitously present in prokaryotes and eukaryotes and defend both types of organisms against toxic compounds in the environment. Four families of MDR systems have been described, each family removing a broad spectrum of compounds by a specific membrane-bound active efflux pump. In the present study, at least four MDR systems were identified genetically in the soil bacterium Streptomyces lividans. The resistance genes of three of these systems were cloned and sequenced. Two of them are accompanied by a repressor gene. These MDR gene sequences are found in most other Streptomyces species investigated. Unlike the constitutively expressed MDR genes in Escherichia coli and other gram-negative bacteria, all of the Streptomyces genes were repressed under laboratory conditions, and resistance arose by mutations in the repressor genes.Abbreviations MDR Multidrug resistance  相似文献   

8.
To examine the subcellular localization of the replication machinery in Escherichia coli, we have developed an immunofluorescence method that allows us to determine the subcellular location of newly synthesized DNA pulse-labeled with 5-bromo-2′-deoxyuridine (BrdU). Using this technique, we have analyzed growing cells. In wild-type cells that showed a single BrdU fluorescence signal, the focus was located in the middle of the cell; in cells with two signals, the foci were localized at positions equivalent to 1/4 and 3/4 of the cell length. The formation of BrdU foci was dependent upon ongoing chromosomal replication. A mutant lacking MukB, which is required for proper partitioning of sister chromosomes, failed to maintain the ordered localization of BrdU foci: (1) a single BrdU focus tended to be localized at a pole-proximal region of the nucleoid, and (2) a focus was often found to consist of two replicating chromosomes. Thus, the positioning of replication forks is affected by the disruption of the mukB gene.  相似文献   

9.
Actinobacteria are prolific producers of secondary metabolites and industrially relevant enzymes. Growth of these mycelial micro-organisms in small culture volumes is challenging due to their complex morphology. Since morphology and production are typically linked, scaling down culture volumes requires better control over morphogenesis. In larger scale platforms, ranging from shake flasks to bioreactors, the hydrodynamics play an important role in shaping the morphology and determining product formation. Here, we report on the effects of agitation on the mycelial morphology of Streptomyces lividans grown in microtitre plates. Our work shows that at the appropriate agitation rates cultures can be scaled down to volumes as small as 100 µl while maintaining the same morphology as seen in larger scale platforms. Using image analysis and principal component analysis we compared the morphologies of the cultures; when agitated at 1400–1600 rpm the mycelial morphology in micro-cultures was similar to that obtained in shake flasks, while product formation was also maintained. Our study shows that the morphology of actinobacteria in micro-cultures can be controlled in a similar manner as in larger scale cultures by carefully controlling the mixing rate. This could facilitate high-throughput screening and upscaling.  相似文献   

10.
Attempts were made to optimize the cultural conditions for the production of L-asparaginase by Streptomyces albidoflavus under submerged fermentations. Enhanced level of L-asparaginase was found in culture medium supplemented with maltose as carbon source. Yeast extract (2%) was served as good nitrogen source for the production of L-asparaginase. The optimum pH for enzyme production was 7.5 and temperature was 35°C. The release of L-asparaginase from the cells of S. albidoflavus was high when strain was treated with cell disrupting agents like EDTA and lysozyme. The enzyme produced by the strain was purifi ed by ammonium sulfate, Sephadex G-100 and CM-Sephadex C-50 gel fi ltration and the molecular weight was apparently determined as 112 kDa.  相似文献   

11.
A novel microbial transglutaminase (TGase) from the cultural filtrate of Streptomyces netropsis BCRC 12429 (Sn) was purified. The specific activity of the purified TGase was 18.2 U/mg protein with an estimated molecular mass of 38 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. The TGase gene of S. netropsis was cloned and an open reading frame of 1,242 bp encoding a protein of 413 amino acids was identified. The Sn TGase was synthesized as a precursor protein with a preproregion of 82 amino acid residues. The deduced amino acid sequence of the mature S. netropsis TGase shares 78.9–89.6% identities with TGases from Streptomyces spp. A high level of soluble Sn TGase with its N-terminal propeptide fused with thioredoxin was expressed in E. coli. A simple and efficient process was applied to convert the purified recombinant protein into an active enzyme and showed activity equivalent to the authentic mature TGase. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Streptolydigin, a secondary metabolite produced by Streptomyces lydicus, is a potent inhibitor of bacterial RNA polymerases. It has been suggested that streptolydigin biosynthesis is associated with polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS). Thus, there is great interest in understanding the role of fatty acid biosynthesis in the biosynthesis of streptolydigin. In this paper, we cloned a type II fatty acid synthase (FAS II) gene cluster of fabDHCF from the genome of S. lydicus and constructed the SlyfabCF-disrupted mutant. Sequence analysis showed that SlyfabDHCF is 3.7 kb in length and encodes four separated proteins with conserved motifs and active residues, as shown in the FAS II of other bacteria. The SlyfabCF disruption inhibited streptolydigin biosynthesis and retarded mycelial growth, which were likely caused by the inhibition of fatty acid synthesis. Streptolydigin was not detected in the culture of the mutant strain by liquid chromatography–mass spectrometry. Meanwhile, the streptolol moiety of streptolydigin accumulated in cultures. As encoded by fabCF, acyl carrier protein (ACP) and β-ketoacyl-ACP synthase II are required for streptolydigin biosynthesis and likely involved in the step between PKS and NRPS. Our results provide the first genetic and metabolic evidence that SlyfabCF is shared by fatty acid synthesis and antibiotic streptolydigin synthesis.  相似文献   

13.
The 2-deoxystreptamine and paromamine are two key intermediates in kanamycin biosynthesis. In the present study, pSK-2 and pSK-7 recombinant plasmids were constructed with two combinations of genes: kanABK and kanABKF and kacA respectively from kanamycin producer Streptomyces kanamyceticus ATCC12853. These plasmids were heterologously expressed into Streptomyces lividans TK24 independently and generated two recombinant strains named S. lividans Sk-2/SL and S. lividans SK-7/SL, respectively. ESI/ MS and ESI-LC/MS analysis of the metabolite from S. lividans SK-2/SL showed that the compound had a molecular mass of 163 [M + H]+, which corresponds to that of 2-deoxystreptamine. ESI/MS and MS/MS analysis of metabolites from S. lividans SK-7/SL demonstrated the production of paromamine with a molecular mass of 324 [M + H]+. In this study, we report the production of paromamine in a heterologous host for the first time. This study will evoke to explore complete biosynthetic pathways of kanamycin and related aminoglycoside antibiotics.  相似文献   

14.
Streptomyces is an interesting host for the secretory production of recombinant proteins because of its innate capacity to secrete proteins at high level in the culture medium. In this report, we evaluated the importance of the phage-shock protein A (PspA) homologue on the protein secretion yield in Streptomyces lividans. The PspA protein is supposed to play a role in the maintenance of the proton motive force (PMF). As the PMF is an energy source for both Sec- and Tat-dependent secretion, we evaluated the influence of the PspA protein on both pathways by modulating the pspA expression. Results indicated that pspA overexpression can improve the Tat-dependent protein secretion as illustrated for the Tat-dependent xylanase C and enhanced green fluorescent protein (EGFP). The effect on Sec-dependent secretion was less pronounced and appeared to be protein dependent as evidenced by the increase in subtilisin inhibitor (Sti-1) secretion but the lack of increase in human tumour necrosis factor (hTNFα) secretion in a pspA-overexpressing strain.  相似文献   

15.
16.
S-Adenosylmethionine (SAM) is synthesized via the metabolic reaction involving adenosine triphosphate and l-methionine that is catalyzed by the enzyme S-adenosyl-l-methionine synthetase (SAM-s) and encoded by the gene metK. In the present study, metK with the absence of introns from Saccharomyces cerevisiae was introduced into Streptomyces actuosus, a nosiheptide (Nsh) producer. Intracellular SAM levels were determined by high-pressure liquid chromatography. Through optimizing the nutrient content of the medium, it was shown that increased SAM production induced by the overexpression of SAM-s leads to an increase in the intracellular cysteine pool and overproduction of Nsh in S. actuosus. This investigation shows that increased SAM promotes the elevated production of the non-ribosomal thiopeptide Nsh in Streptomyces sp.  相似文献   

17.
The KgmB methylase (the kanamycin–gentamicin resistance methylase from Streptomyces tenebrarius) acts at G-1405 of 16S rRNA within the sequence CGUCA that is also found 6 bp in front of ribosomal binding site of the kgmB gene. The kgmBlacZ gene and operon fusions were used in order to test for translational autoregulation of kgmB gene. Overexpression of kgmB either in cis or in trans drastically decreased the level of expression of the fusion protein. However, mutagenesis eliminated any role for the CGUCA sequence in translational autoregulation. Hence, the role of second putative regulatory sequence (CGCCC) that was shown to be involved in regulation of another methylase, Sgm (sisomicin–gentamicin methylase gene from Micromonospora zionensis) was examined. It was shown that the Sgm methylase can also decrease the level of expression of the kgmBlacZ fusion protein.  相似文献   

18.
Through the screening of a Streptomyces coelicolor genomic library, carried out in a histidinol phosphate phosphatase (HolPase) deficient strain, SCO5208 was identified as the last unknown gene involved in histidine biosynthesis. SCO5208 is a phosphatase, and it can restore the growth in minimal medium in this HolPase deficient strain when cloned in a high or low copy number vector. Moreover, it shares sequence homology with other HolPases recently identified in Actinobacteria. During this work a second phosphatase, SCO2771, sharing no homologies with SCO5208 and all so far described phosphatases was identified. It can complement HolPase activity mutation only at high copy number. Sequence analysis of SCO5208 and SCO2771, amplified from the HolPase mutant strain, revealed that SCO5208 shows a mutation in a conserved amino acid, whereas SCO2771 does not show any mutation. All these results show that S. coelicolor SCO5208, recently renamed hisN, is the HolPase involved in histidine biosynthesis.  相似文献   

19.
The diverse morphology of the filamentous organism Streptomyces hygroscopicus var. geldanus was characterised by image analysis under various environmental conditions. In the presence of surfactant compounds, a significant decrease in the mean pellet diameter was observed. Cell aggregation was also influenced by spore inoculum level, with high concentrations reducing pellet size. In addition, the dispersion of pellets was found to increase with the inclusion of glass beads to submerged shake-flask cultures. In all cases, production of the secondary metabolite geldanamycin was determined to be dependent on the morphological profile of the organism, with a concomitant increase of 88% in geldanamycin yield observed as the mean pellet diameter was reduced by 70%. Thus, to maximise the yield of geldanamycin, it is necessary to limit pellet formation in Streptomyces hygroscopicus var. geldanus to an appropriate size.  相似文献   

20.

Background

The gene encoding a thermostable cellulase of family 12 was previously isolated from a Rhodothermus marinus through functional screening. CelA is a protein of 260 aminoacyl residues with a 28-residue amino-terminal signal peptide. Mature CelA was poorly synthesized in some Escherichia coli strains and not at all in others. Here we present an alternative approach for its heterologous production as a secreted polypeptide in Streptomyces.

Results

CelA was successfully over-expressed as a secreted polypeptide in Streptomyces lividans TK24. To this end, CelA was fused C-terminally to the secretory signal peptide of the subtilisin inhibitor protein (Sianidis et al. in J Biotechnol. 121: 498–507, 2006) from Streptomyces venezuelae and a new cloning strategy developed. Optimal growth media and conditions that stall biomass production promote excessive CelA secretion. Under optimal growth conditions in nutrient broth medium, significant amounts of mature CelA (50–90 mg/L or 100–120 mg/g of dry cell weight) are secreted in the spent growth media after 7 days. A protocol to rapidly purify CelA to homogeneity from culture supernatants was developed and specific anti-sera raised against it. Biophysical, biochemical and immmuno-detection analyses indicate that the enzyme is intact, stable and fully functional. CelA is the most thermostable heterologous polypeptide shown to be secreted from S. lividans.

Conclusion

This study further validates and extends the use of the S. lividans platform for production of heterologous enzymes of industrial importance and extends it to active thermostable enzymes. This study contributes to developing a platform for poly-omics analysis of protein secretion in S. lividans.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号