首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Gratias A  Bétermier M 《Biochimie》2001,83(11-12):1009-1022
The development of a new somatic nucleus (macronucleus) during sexual reproduction of the ciliate Paramecium aurelia involves reproducible chromosomal rearrangements that affect the entire germline genome. Macronuclear development can be induced experimentally, which makes P. aurelia an attractive model for the study of the mechanism and the regulation of DNA rearrangements. Two major types of rearrangements have been identified: the fragmentation of the germline chromosomes, followed by the formation of the new macronuclear chromosome ends in association with imprecise DNA elimination, and the precise excision of internal eliminated sequences (IESs). All IESs identified so far are short, A/T rich and non-coding elements. They are flanked by a direct repeat of a 5'-TA-3' dinucleotide, a single copy of which remains at the macronuclear junction after excision. The number of these single-copy sequences has been estimated to be around 60,000 per haploid genome. This review focuses on the current knowledge about the genetic and epigenetic determinants of IES elimination in P. aurelia, the analysis of excision products, and the tightly regulated timing of excision throughout macronuclear development. Several models for the molecular mechanism of IES excision will be discussed in relation to those proposed for DNA elimination in other ciliates.  相似文献   

2.
3.
Programmed excision of internal eliminated sequences (IESs) occurs at thousands of sites in ciliate genomes. How this is controlled is largely unknown. Here, we report the characterization of the non-efficiently excised 156ψG-11 IES from Paramecium primaurelia strain 156 and that of the efficiently excised 168ψG-11 IES, an allelic variant from strain 168. Then, we report a genetic and molecular analysis of IES excision efficiency in F1 progeny derived from interstrain crosses and in F2 homozygous progeny derived from F1 autogamy. IES 168ψG-11 excision efficiency was ~100% in all cases. IES 156ψG-11 excision efficiency was 19 ± 13% in F1 progeny and 0.6 ± 1.1% in F2 progeny. No trans-excision event between IESs 156ψG-11 and 168ψG-11 was detected within the F1 progeny. These data demonstrate that the excision efficiency of this IES is variable and controlled by a cis-acting element. This should encompass positions 8 and/or 9 of the right IES end, which display allele differences. Finally, the 30-fold stimulation of IES 156ψG-11 excision efficiency within F1 progeny relative to F2 progeny demonstrates that Paramecium IES excision efficiency is sensitive either to a conjugation-specific trans-acting factor provided by the zygotic genome, or to homologous chromosome cross-talk.  相似文献   

4.
5.
P J Lammers  J W Golden  R Haselkorn 《Cell》1986,44(6):905-911
Vegetative cells of the cyanobacterium Anabaena contain an 11 kb DNA element within the coding region of the nifD gene. This element is excised by site-specific recombination between directly repeated 11 bp sequences at each of its ends during differentiation of nitrogen-fixing cells called heterocysts. Site-specific recombination, leading to the same rejoined nifD gene, was observed during propagation in E. coli of a fragment containing the 11 kb element and flanking sequences. An assay for excision of the element in E. coli was developed, based on mini-Mu-lac transposition into the element. Since the 11 kb element lacks an origin of replication, its excision results in loss of lac and conversion of blue colony-forming cells to white on X-gal plates. Insertion and deletion mutagenesis identified a region of the element needed for excision. Mutations in this region could be complemented by a 6 kb fragment containing an open reading frame that runs counter to those of the nif genes, beginning 240 bp from the recombination site.  相似文献   

6.
7.
We report the complete nucleotide sequence of the Tetrahymena pyriformis mitochondrial genome and a comparison of its gene content and organization with that of Paramecium aurelia mtDNA. T. pyriformis mtDNA is a linear molecule of 47,172 bp (78.7 % A+T) excluding telomeric sequences (identical tandem repeats of 31 bp at each end of the genome). In addition to genes encoding the previously described bipartite small and large subunit rRNAs, the T. pyriformis mitochondrial genome contains 21 protein-coding genes that are clearly homologous to genes of defined function in other mtDNAs, including one (yejR) that specifies a component of a cytochrome c biogenesis pathway. As well, T. pyriformis mtDNA contains 22 open reading frames of unknown function larger than 60 codons, potentially specifying proteins ranging in size from 74 to 1386 amino acid residues. A total of 13 of these open reading frames ("ciliate-specific") are found in P. aurelia mtDNA, whereas the remaining nine appear to be unique to T. pyriformis; however, of the latter, five are positionally equivalent and of similar size in the two ciliate mitochondrial genomes, suggesting they may also be homologous, even though this is not evident from sequence comparisons. Only eight tRNA genes encoding seven distinct tRNAs are found in T. pyriformis mtDNA, formally confirming a long-standing proposal that most T. pyriformis mitochondrial tRNAs are nucleus-encoded species imported from the cytosol. Atypical features of mitochondrial gene organization and expression in T. pyriformis mtDNA include split and rearranged large subunit rRNA genes, as well as a split nad1 gene (encoding subunit 1 of NADH dehydrogenase of respiratory complex I) whose two segments are located on and transcribed from opposite strands, as is also the case in P. aurelia. Gene content and arrangement are very similar in T. pyriformis and P. aurelia mtDNAs, the two differing by a limited number of duplication, inversion and rearrangement events. Phylogenetic analyses using concatenated sequences of several mtDNA-encoded proteins provide high bootstrap support for the monophyly of alveolates (ciliates, dinoflagellates and apicomplexans) and slime molds.  相似文献   

8.
Gliadins, the major wheat seed storage proteins, are encoded by a multigene family. Northern blot analysis shows that gliadin genes are transcribed in endosperm tissue into two classes of poly(A)+ mRNA, 1400 bases (class I) and 1600 bases (class II) in length. Using poly(A)+ RNA from developing wheat endosperm we constructed a cDNA library from which a number of clones coding for alpha/beta and gamma gliadins were identified by hybrid-selected mRNA translation and DNA sequencing. These cDNA clones were used as probes for the isolation of genomic gliadin clones from a wheat genomic library. One such genomic clone was characterized in detail and its DNA sequence determined. It contains a gene for a 33-kd alpha/beta gliadin protein (a 20 amino acid signal peptide and a 266 amino acid mature protein) which is very rich in glutamine (33.8%) and proline (15.4%). The gene sequence does not contain introns. A typical eukaryotic promoter sequence is present at -104 (relative to the translation initiation codon) and there are two normal polyadenylation signals 77 and 134 bases downstream from the translation termination codon. The coding sequence contains some internal sequence repetition, and is highly homologous to several alpha/beta gliadin cDNA clones. Homology to a gamma-gliadin cDNA clone is low, and there is no homology with known glutenin or zein cDNA sequences.  相似文献   

9.
During cut-and-paste mariner/Tc1 transposition, transposon DNA is cut precisely at its junction with flanking DNA, ensuring the transposon is neither shortened nor lengthened with each transposition event. Each transposon end is flanked by a TpA dinucleotide: the signature target site duplication of mariner/Tc1 transposition. To establish the role of this sequence in accurate DNA cleavage, we have determined the crystal structure of a pre-second strand cleavage mariner Mos1 transpososome. The structure reveals the route of an intact DNA strand through the transposase active site before second strand cleavage. The crossed architecture of this pre-second strand cleavage paired-end complex supports our proposal that second strand cleavage occurs in trans. The conserved mariner transposase WVPHEL and YSPDL motifs position the strand for accurate DNA cleavage. Base-specific recognition of the flanking DNA by conserved amino acids is revealed, defining a new role for the WVPHEL motif in mariner transposition and providing a molecular explanation for in vitro mutagenesis data. Comparison of the pre-TS cleavage and post-cleavage Mos1 transpososomes with structures of Prototype Foamy Virus intasomes suggests a binding mode for target DNA prior to Mos1 transposon integration.  相似文献   

10.
The basidiomycete Schizophyllum commune produces three chromatographically distinguishable proteases which are capable of attack on a variety of other enzymes from S. commune and other sources. These proteases, which are produced during a specific phase of the development cycle, exhibit typical enzyme kinetic patterns, are active in the neutral to weakly alkaline pH range and are inhibited by phenylmethylsulfonyl fluoride, soybean trypsin inhibitor, and ovomucoid. No pattern of specificity toward the test enzymes could be discerned. The proteases co-purify with the activity which causes the increase in cold lability of S. commune phosphoglucomutase reported previously. In addition, one of the protease enzymes could be purified to the point where it had no significant ability to release trichloroacetic acid products from denatured substrates at pH 3 or pH 7. When undenatured hemoglobin was used as a substrate, the purified protease releases a relatively large molecular weight nonheme peptide. Relatively large peptides are also formed after proteolysis of rabbit muscle phosphoglucomutase. These results suggest that the protease carries out only limited proteolysis.  相似文献   

11.
The small serine resolvase ParA from bacterial plasmids RK2 and RP4 catalyzes the recombination of two identical 133 bp recombination sites known as MRS. Previously, we reported that ParA is active in the fission yeast Schizosaccharomyces pombe. In this work, the parA recombinase gene was placed under the control of the Arabidopsis OXS3 promoter and introduced into Arabidopsis lines harboring a chromosomally integrated MRS-flanked target. The ParA recombinase excised the MRS-flanked DNA and the excision event was detected in subsequent generations in the absence of ParA, indicating germinal transmission of the excision event. The precise site-specific deletion by the ParA recombination system in planta demonstrates that the ParA recombinase can be used to remove transgenic DNA, such as selectable markers or other introduced transgenes that are no longer desired in the final product.  相似文献   

12.
A novel circular DNA virus sequence is reported from grapevine. The corresponding genomic organization, coding potential, and conserved origin of replication are similar to those of members of the family Geminiviridae, but the genome of 3,206 nucleotides is 4% larger than the largest reported geminiviral genome and shares only 50% overall sequence identity.  相似文献   

13.
We describe a simple PCR-based method for the isolation of genomic DNA that lies adjacent to a known DNA sequence. The method is based on the directional cloning of digested genomic DNA into the multiple cloning site of a pUC-based plasmid to generate a limited genomic library. The library is plated onto a number of selective LA plates which are incubated overnight, and recombinant plasmid DNA is then isolated from resistant colonies pooled from each plate. PCR amplification is performed on the pooled recombinant plasmid DNAs using primers specific for the pUC vector and the known genomic sequence. The combination of efficient directional cloning and bacterial transformation gives relative enrichment for the genomic sequence of interest and generates a simple DNA template, enabling easy amplification by PCR.  相似文献   

14.
Piliated Neisseria gonorrhoeae are known to be transformed less readily if transforming DNA competes with DNA containing the 10-bp sequence GCCGTCTGAA. It has been postulated that the 10-bp sequence is a recognition sequence which is required for efficient DNA uptake. We show that the presence of various forms of this 10-bp sequence results in increased uptake of double-stranded DNA into a DNase-resistant state and allows genetic transformation by an otherwise nontransformable plasmid.  相似文献   

15.
Directed excision of a transgene from the plant genome   总被引:40,自引:0,他引:40  
Summary The effectiveness of loxP-Cre directed excision of a transgene was examined using phenotypic and molecular analyses. Two methods of combining the elements of this system, re-transformation and cross pollination, were found to produce different degrees of excision in the resulting plants. Two linked traits, -glucuronidase (GUS) and a gene encoding sulfonylurea-resistant acetolactate synthase (ALSr), were integrated into the genome of tobacco and Arabidopsis. The ALSr gene, bounded by loxP sites, was used as the selectable marker for transformation. The directed loss of the ALST gene through Cre-mediated excision was demonstrated by the loss of resistance to sulfonylurea herbicides and by Southern blot analysis. The -glucuronidase gene remained active. The excision efficiency varied in F1 progeny of different lox and Cre parents and was correlated with the Cre parent. Many of the lox × Cre F1 progeny were chimeric and some F2 progeny retained resistance to sulfonylureas. Re-transformation of lox/ALS/lox/GUS tobacco plants with cre led to much higher efficiency of excision. Lines of tobacco transformants carrying the GUS gene but producing only sulfonylurea-sensitive progeny were obtained using both approaches for introducing cre. Similarly, Arabidopsis lines with GUS activity but no sulfonylurea resistance were generated using cross pollinations.  相似文献   

16.
During senescence in Podospora anserina, specific gene regions of the mitochondrial genome are excised and amplified. The most prevalent, termed alpha-event senDNA, is a 2600 bp circular molecule which is excised from the contiguous Hae III fragments 23,14 region of the mitochondrial DNA restriction map. We have cloned alpha-DNA plasmid from races s+ and A+ as well as the genomic fragments Hae III 23,14 and have sequenced those regions which constitute the alpha-junction sites. We have found that one excision site (J1) is located 24 bp from the proximal Hae III 23 restriction site and the other (J2) 172 bp from the distal Hae III 14 site. Flanking the alpha-DNA sequences on the mitochondrial genome, there are 10 bp palindromic sequences: CAATATATTG, ending 3 bases from the J1 site, and ATTATATAAT which starts 8 bases from the J2 site. Neither of these 10 bp palindromes are present on the alpha-DNA plasmid. Abutting the J1 site on the alpha-DNA there is a 5 bp sequence (GTGCT) which is repeated 8 bp downstream. In joining the two distal J1 and J2 sites, a 7 bp repeat (ACGTGCG) is produced. These results are discussed within the context of site-specific recombination.  相似文献   

17.
18.
Stable maintenance of a 35-base-pair yeast mitochondrial genome.   总被引:6,自引:1,他引:6       下载免费PDF全文
Small deletion variants ([rho-] mutants) derived from the wild-type ([ rho+]) Saccharomyces cerevisiae mitochondrial genome were isolated and characterized. The mutant mitochondrial DNAs (mtDNAs) examined retained as little as 35 base pairs of one section of intergenic DNA, were composed entirely of A.T base pairs, and were stably maintained. These simple mtDNAs existed in tandemly repeated arrays at an amplified level that made up approximately 15% of the total cellular DNA and, as judged by fluorescence microscopy, had a nearly normal mitochondrial arrangement throughout the cell cytoplasm. The simple nature of these [rho-] genomes indicates that the sequences required to maintain mtDNA must be extremely simple.  相似文献   

19.
20.
Li X  Peng Y  Ren J  Qu X 《Biochemistry》2006,45(45):13543-13550
Several factors can influence charge transport (CT)-mediated DNA, such as sequence, distance, base stacking, base pair mismatch, conformation, tether length, etc. However, the DNA context effect or how flanking sequences influence redox active drugs in the DNA CT reaction and later in DNA enzymatic repair and synthesis is still not well understood. The set of seven DNA molecules in this study have been characterized well for the study of flanking sequence effects. These DNA duplexes are formed from self-complementary strands and contain the common central four-base sequence 5'-A-G-C-T-3', flanked on both sides by either (AT)(n) or (AA)(n) (n = 2, 3, or 4) or AA(AT)(2). UV-vis, fluorescence, UV melting, circular dichroism, and cyclic voltammetry experiments were used to study the flanking sequence effect on CT-mediated DNA by using daunomycin or adriamycin cross-linked with these seven DNA molecules. Our results showed that charge transport was related to the flanking sequence, DNA melting free energy, and ionic strength. For (AA)(n) or (AT)(n) species of the same length, (AA)(n) series were more stable and more efficient CT was observed through the (AA)(n) series. The same trend was observed for (AA)(n)() and (AT)(n) series at different ionic strengths, further supporting the idea that flanking sequence can result in different base stacking and modulate charge transport through these seven DNA molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号