首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The involvement of cyclic AMP in mediating regulatory peptide-controlled prolactin release from GH3 pituitary tumour cells was investigated. Cholera toxin and forskolin elicited concentration-dependent increases in both GH3 cell cyclic AMP content and prolactin release. The maximum rise in prolactin release with these agents was 2-fold over basal. 8-Bromo-cyclic AMP produced a similar stimulation of prolactin release. The phosphodiesterase inhibitor isobutylmethylxanthine also produced an increase in prolactin release and GH3 cell cyclic AMP content. However, the magnitude of the stimulated prolactin release exceeded that obtained with any other agent. Thyrotropin-releasing hormone (thyroliberin) and vasoactive intestinal polypeptide produced a concentration-dependent rise in both cell cyclic AMP content and prolactin release. However, only vasoactive intestinal polypeptide elicited an increase in cell cyclic AMP content at concentrations relevant to the stimulation of prolactin release. Vasoactive intestinal polypeptide and thyrotropin-releasing hormone, when used in combination, were additive with respect to prolactin release. Vasoactive intestinal polypeptide and forskolin, at concentrations that were maximal upon prolactin release, were, when used in combination, synergistic upon GH3 cell cyclic AMP content but were not additive upon prolactin release. In conclusion the evidence supports a role for cyclic AMP in the mediation of vasoactive intestinal polypeptide- but not thyrotropin-releasing hormone-stimulated prolactin release from GH3 cells. A quantitative analysis indicates that a 50-100% rise in cyclic AMP suffices to stimulate cyclic AMP-dependent prolactin release fully.  相似文献   

2.
VIP stimulates protein kinase activity in intestinal epithelial cells isolated from rat jejuno-ileum. The stimulation is time-dependent and is potentiated by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. The response occurs in the 0.1–10 nM range of VIP concentrations, half-maximal stimulation being observed with 0.7 nM VIP. The VIP-induced protien kinase activation is thus observed at concentrations similar to those promoting the accumulation of cyclic AMP (11). Secretin also stimulates protien kinase activity but with a 100-times lower potency than VIP, in agreement with the fact that secretin is a VIP agonist of 100-times lower potency with respect to cyclic AMP increase. Prostaglandins E1 and E2 (10?5 M), are also found to increase protein kinase activity.  相似文献   

3.
The influence of protein kinase C (PKC) activation on cyclic AMP production in GH3 cells has been studied. The stimulation of cyclic AMP accumulation induced by forskolin and cholera toxin was potentiated by 4 beta-phorbol 12,13-dibutyrate (PDBu). Moreover, PDBu, which causes attenuation of the maximal response to vasoactive intestinal polypeptide (VIP), also induced a small right shift in the dose-response curve for VIP-induced cyclic AMP accumulation. PDBu-stimulated cyclic AMP accumulation was unaffected by pretreatment of cells with pertussis toxin or the inhibitory muscarinic agonist, oxotremorine. PDBu stimulation of adenylate cyclase activity required the presence of a cytosolic factor which appeared to translocate to the plasma membrane in response to the phorbol ester. The diacylglycerol-generating agents thyroliberin, bombesin and bacterial phospholipase C each stimulated cyclic AMP accumulation, but, unlike PDBu, did not attenuate the stimulation induced by VIP. These results suggest that PKC affects at least two components of the adenylate cyclase complex. Stimulation of cyclic AMP accumulation is probably due to modification of the catalytic subunit, whereas attenuation of VIP-stimulated cyclic AMP accumulation appears to be due to the phosphorylation of a different site, which may be the VIP receptor.  相似文献   

4.
4 beta phorbol-12, 13-dibutyrate (PDBu) stimulated cyclic AMP accumulation in GH3 pituitary tumour cells in the presence of isobutylmethylxanthine. This effect persisted after preincubation of cells with cholera or pertussis toxins. In contrast, vasoactive intestinal polypeptide (VIP)-stimulated cyclic AMP accumulation was inhibited by PDBu in a dose dependent fashion (IC50 = 5.1 nM). Thyroliberin (TRH) had a similar, but non-additive, stimulatory effect on cyclic AMP accumulation with PDBu, however it did not inhibit VIP stimulation. These results suggest that TRH may stimulate cyclic AMP accumulation through protein kinase C and that stimulation of adenylate cyclase by PDBu and TRH may occur distal to the guanine nucleotide binding regulatory proteins, Ns and Ni.  相似文献   

5.
Vasoactive intestinal peptide (VIP) stimulated cyclic AMP production in rat peritoneal macrophages. The stimulatory effect of VIP was dependent on time, temperature and cell concentration, and was potentiated by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). At 15 degrees C, the response occurred in the 0.1-1000 nM range of VIP concentrations. Half maximal stimulation of cellular cyclic AMP (ED50) was obtained at 1.2 +/- 0.5 nM VIP, and maximal stimulation (about 3-fold basal level) was obtained between 100-1000 nM. The cyclic AMP system of rat peritoneal macrophages showed a high specificity for VIP. The order of potency observed in inducing cyclic AMP production was VIP greater than rGRF greater than hGRF greater than PHI greater than secretin. Glucagon, insulin, pancreastatin and octapeptide of cholecystokinin did not modify cyclic AMP levels at concentrations as high as 1 microM. The beta-adrenergic agonist isoproterenol increased the cyclic AMP production and show additive effect with VIP. Somatostatin inhibits the accumulation of cyclic AMP in the presence of both vasoactive intestinal peptide and isoproterenol. The finding of a VIP-stimulated cyclic AMP system in rat peritoneal macrophages, together with the previous characterization of high-affinity receptors for VIP in the same cell preparation, strongly suggest that VIP may be involved in the regulation of macrophage function.  相似文献   

6.
Previous work has shown that incubation of hippocampal slices in medium without added calcium markedly attenuates the capacity of vasoactive intestinal peptide (VIP) to elevate cyclic AMP levels. The present studies examined the mechanism that confers calcium dependence on VIP stimulation of cyclic AMP accumulation in hippocampal slices. Calcium dependence was apparent immediately on slice preparation and was reversible only if calcium ions were added back very early during slice incubation (within 5 min). The cyclic AMP response to VIP was not abolished by preincubating slices in 100 microM adenosine, suggesting that calcium-dependent, VIP-induced release of adenosine does not mediate VIP elevation of cyclic AMP. VIP-stimulated cyclic AMP accumulation was not decreased by agents that block calcium influx (verapamil, nifedipine, magnesium ions), or by calmodulin antagonists (trifluoperazine, calmidozolium). In fact both verapamil (100 microM) and magnesium (14 mM) augmented VIP stimulation of cyclic AMP generation. Incubation of slices with the phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine (MIX) did not affect VIP activation of cyclic AMP accumulation if slices were incubated without added calcium, but MIX did enhance VIP elevation of cyclic AMP content in slices incubated with calcium. Thus calcium dependence of the cyclic AMP response to VIP in hippocampal slices is unlikely to result from VIP-dependent calcium influx, from interactions with calmodulin, or from calcium-inhibited phosphodiesterase(s).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The role of cyclic AMP on endothelial cell proliferation was investigated, since these cells can be exposed to high concentrations of physiological and pharmacological agents that alter cyclic AMP metabolism. Cloned bovine aortic endothelial cells were plated at 25,000 cells/35mm dish and grown for 5 days in the presence of phosphodiesterase (PDE) inhibitors, forskolin, or cyclic AMP analogs. The PDE inhibitors dipyridamole, ZK 62 711, isobutylmethylxanthine (IBMX) and theophylline inhibited cell growth in a concentration-dependent manner. Dipyridamole produced a 30% and a 50% inhibition at 5 microM and 12.5 microM, while higher concentrations were cytotoxic. At its therapeutic plasma concentration range (50-100 microM) theophylline inhibited cell proliferation by 15-25%, while IBMX and the highly specific cyclic AMP phosphodiesterase inhibitor, ZK 62 711 inhibited growth by 60-80% and 40-50%, respectively. Forskolin (5 microM) increased cyclic AMP levels and cyclic AMP-kinase activity ratios by 2.5-fold and 2-fold. In the absence of PDE inhibitors forskolin produced a 20% growth inhibition at 0.5 microM and a 60% inhibition at 10 microM. The forskolin dose-response curve was not altered by theophylline, but was shifted to the left by approximately 10-fold with dipyridamole and ZK 62 711 and 5-fold with IBMX. Forskolin (5 microM), by itself produced a 1.8-fold increase in cyclic AMP. In the presence of 5 microM theophylline, dipyridamole, IBMX, and ZK 62 711, cyclic AMP was increased by forskolin 2.0, 2.6, 3.5, and 6.6-fold, respectively. 8-Bromo cyclic AMP and dibutyryl cyclic AMP produced a 55% and 60% growth inhibition at 100 microM. The cyclic GMP analogs were less effective inhibitors of growth (15-30%). Our results demonstrate that cyclic AMP analogs and pharmacological agents that elevate intracellular cyclic AMP levels inhibit cell growth and suggest that cyclic AMP may be an important endogenous regulator of endothelial cell proliferation.  相似文献   

8.
Vasoactive intestinal peptide (VIP) stimulated protein kinase activity in HeLa cells. Maximal activation by the peptide required the simultaneous presence of a phosphodiesterase inhibitor. The response was dose-dependent in the 0.3–10 nM range, half-maximal stimulation being observed at 1 nM VIP. This value agrees with the concentration of VIP required for half-maximal stimulation of cyclic AMP production as well as with the Kd of the high affinity binding sites for VIP in the same cell system (15). Secretin also stimulated protein kinase activity but with a 300-times lower potency than VIP. When DNA synthesis in Hela cells was studied, no effect of VIP could be seen in a 0.1–100 nM range of peptide concentration.  相似文献   

9.
V Csernus  A V Schally  K Groot 《Peptides》1999,20(7):843-850
Antagonistic analogs of growth hormone-releasing hormone (GHRH) inhibit growth of various human cancers both in vivo and in vitro. GHRH, vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating peptide stimulate cyclic AMP (cAMP) release from various human cancer cell lines in vitro. Thus, in the present study, we investigated the effects of antagonistic analogs of GHRH on the GHRH- and VIP-induced cAMP release from cultured human cancer cells in a superfusion system. Various human cancer cell lines were exposed to human GHRH(1-29)NH2 (2-20 nM) or VIP (0.1-5 nM) repeatedly for 12 min or continuously for 96 min. GHRH antagonist MZ-5-156 at 100 to 200 nM concentration inhibited the GHRH- or VIP-induced cAMP release from mammary (MDA-MB-468), prostatic (PC-3), and pancreatic (SW-1990 and CAPAN-2) cancer cells. These results show that antagonistic analogs of GHRH suppress the stimulatory effects of GHRH and VIP on the cAMP production of various cancer cells. Because cAMP is a potent second messenger controlling many intracellular functions, including the stimulation of cell growth, an inhibition of autocrine/paracrine action of GHRH by the GHRH antagonists may provide the basis for the development of new methods for cancer treatment.  相似文献   

10.
We examined the mechanism by which adenosine inhibits prolactin secretion from GH3 cells, a rat pituitary tumour line. Prolactin release is enhanced by vasoactive intestinal peptide (VIP), which increases cyclic AMP, and by thyrotropin-releasing hormone (TRH), which increases inositol phosphates (IPx). Analogues of adenosine decreased prolactin release, VIP-stimulated cyclic AMP accumulation and TRH-stimulated inositol phospholipid hydrolysis and IPx generation. Inhibition of InsP3 production by R-N6-phenylisopropyladenosine (R-PIA) was rapid (15 s) and was not affected by the addition of forskolin or the removal of external Ca2+. Addition of adenosine deaminase or the potent adenosine-receptor antagonist, BW-A1433U, enhanced the accumulation of cyclic AMP by VIP, indicating that endogenously produced adenosine tonically inhibits adenylate cyclase. The potency order of adenosine analogues for inhibition of cyclic AMP and IPx responses (measured in the presence of adenosine deaminase) was N6-cyclopentyladenosine greater than R-PIA greater than 5'-N-ethylcarboxamidoadenosine. This rank order indicates that inhibitions of both cyclic AMP and InsP3 production are mediated by adenosine A1 receptors. Responses to R-PIA were blocked by BW-A1433U (1 microM) or by pretreatment of cells with pertussis toxin. A greater amount of toxin was required to eliminate the effect of R-PIA on inositol phosphate than on cyclic AMP accumulation. These data indicate that adenosine, in addition to inhibiting cyclic AMP accumulation, decreases IPx production in GH3 cells, possibly by directly inhibiting phosphoinositide hydrolysis.  相似文献   

11.
Vasoactive intestinal peptide (VIP) has been shown to increase cyclic AMP content in isolated epithelial cells of rat ventral prostate. The stimulatory effect of VIP was dependent on time and temperature and was potentiated by a phosphodiesterase inhibitor. At 15 degrees C, the response occurred in the 1 X 10(-10)-10(-7)M range of VIP concentrations. Half-maximal stimulation of cellular cyclic AMP was obtained at 1.4 nM and maximal stimulation (3-fold basal level) at about 100 nM VIP. Chicken VIP and porcine secretin were agonists of porcine VIP but exhibited a 2-times higher and a 170-times lower potency, respectively. A high concentration (1 X 10(-6)M) of glucagon, somatostatin, neurotensin, substance P, Met-enkephalin or Leu-enkephalin did not modify cAMP levels. The finding of a VIP-stimulated cAMP system in rat prostatic epithelial cells together with the previous characterization of high-affinity receptors for VIP in the same cell preparation, as well as the presence of VIP-containing neurones innervating the male genitourinary tract, strongly suggest that VIP may be involved in prostatic growth regulation and function.  相似文献   

12.
Glucagon (10nM) prevented insulin (10nM) from activating the plasma-membrane cyclic AMP phosphodiesterase. This effect of glucagon was abolished by either PIA [N6-(phenylisopropyl)adenosine] (100nM) or adenosine (10 microM). Neither PIA nor adenosine exerted any effect on the plasma-membrane cyclic AMP phosphodiesterase activity either alone or in combination with glucagon. Furthermore, PIA and adenosine did not potentiate the action of insulin in activating this enzyme. 2-Deoxy-adenosine (10 microM) was ineffective in mimicking the action of adenosine. The effect of PIA in preventing the blockade by glucagon of insulin's action was inhibited by low concentrations of theophylline. Half-maximal effects of PIA were elicited at around 6nM-PIA. It is suggested that adenosine is exerting its effects on this system through an R-type receptor. This receptor does not appear to be directly coupled to adenylate cyclase, however, as PIA did not affect either the activity of adenylate cyclase or intracellular cyclic AMP concentrations. Insulin's activation of the plasma-membrane cyclic AMP phosphodiesterase, in the presence of both glucagon and PIA, was augmented by increasing intracellular cyclic AMP concentrations with either dibutyryl cyclic AMP or the cyclic AMP phosphodiesterase inhibitor Ro-20-1724. PIA also inhibited the ability of glucagon to uncouple (desensitize) adenylate cyclase activity in intact hepatocytes. This occurred at a half-maximal concentration of around 3 microM-PIA. However, if insulin (10 nM) was also present in the incubation medium, PIA exerted its action at a much lower concentration, with a half-maximal effect occurring at around 4 nM.  相似文献   

13.
The effects of forskolin, Ro 20-1724, rolipram, and 3-isobutyl-1-methylxanthine (IBMX) on morphine-evoked release of adenosine from dorsal spinal cord synaptosomes were evaluated to examine the potential involvement of cyclic AMP in this action of morphine. Ro 20-1724 (1-100 microM), rolipram (1-100 microM), and forskolin (1-10 microM) increased basal release of adenosine, and at 1 microM inhibited morphine-evoked release of adenosine. Release of adenosine by Ro 20-1724, rolipram, and forskolin was reduced 42-77% in the presence of alpha,beta-methylene ADP and GMP, which inhibits ecto-5'-nucleotidase activity by 81%, indicating that this adenosine originated predominantly as nucleotide(s). Significant amounts of adenosine also were released from the ventral spinal cord by these agents. Ro 20-1724 and rolipram did not significantly alter the uptake of adenosine into synaptosomes. Although Ro 20-1724 and rolipram had only limited effects on the extrasynaptosomal conversion of added cyclic AMP to adenosine, IBMX, a phosphodiesterase inhibitor with a broader spectrum of inhibitory activity for phosphodiesterase isoenzymes, significantly inhibited the conversion of cyclic AMP to adenosine and resulted in recovery of a substantial amount of cyclic AMP. As with the non-xanthine phosphodiesterase inhibitors, IBMX increased basal release of adenosine and reduced morphine-evoked release of adenosine. Adenosine released by IBMX was reduced 70% in the presence of alpha,beta-methylene ADP and GMP, and release from the ventral spinal cord was 61% of that from the dorsal spinal cord. Collectively, these results indicate that forskolin and phosphodiesterase inhibitors release nucleotide(s) which is (are) converted extrasynaptosomally to adenosine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The effects of vasoactive intestinal polypeptide (VIP) on exocrine protein secretion were studied in enzymatically dispersed cell aggregates from rat parotid glands. VIP (10(-9) - 10(-7) M) stimulated secretion of alpha-amylase in a dose-dependent manner. The VIP-induced release of alpha-amylase was potentiated in the presence of a phosphodiesterase inhibitor. Basal levels of cyclic AMP of the dispersed cells were increased 6.7-fold after stimulation for 10 min by VIP (10(-7) M). The VIP-induced release of alpha-amylase was reduced by 40% when cells were incubated in a Ca2+-free medium in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA). Efflux of 45Ca2+ was significantly increased over basal levels by stimulation with VIP (10(-8) and 10(-7) M), but this increased efflux was approximately only half the increased efflux induced by carbachol (10(-5) M). VIP had no effect on the incorporation of [14C]leucine into protein by parotid cells, whereas incorporation was reduced to 30% of the control value by carbachol (10(-5) M). Thus, the VIP-ergic secretory response in the rat parotid gland is associated with a raised intracellular cyclic AMP level and the mobilisation of a different intracellular Ca2+ pool than that mobilised by carbachol. It is, therefore, closely analogous to the beta-adrenergic response.  相似文献   

15.
P Wiik 《Regulatory peptides》1989,25(2):187-197
The neuropeptide vasoactive intestinal peptide (VIP) was shown to inhibit the production of reactive oxygen compounds (respiratory burst) in monocytes activated by serum opsonized zymosan. Reactive oxygen compounds are of importance for host defence against micro-organisms and cancer, but normal tissues are also susceptible to damage from these reactive substances. Maximum inhibition of respiratory burst was 40% by 0.1 microM VIP (ID100), while ID50 for the VIP effect was 0.36 nM VIP. PHM-27, closely related to VIP on the basis of the amino acid sequence, inhibited the respiratory burst with much lower potency (ID50 = 60 nM, ID100 = 1 microM). Secretin, related to VIP and PHM-27, produced no effect on the respiratory burst in monocytes. VIP was also shown to stimulate the cyclic AMP production in monocytes in a dose dependent manner. IBMX and forskolin, as well as the cyclic AMP analogue butyryl cyclic AMP were shown to produce an inhibition of the respiratory burst. In conclusion, this study showed that VIP inhibited the respiratory burst in monocytes by a cyclic AMP-mediated mechanism, and serves to establish still another role for VIP as a mediator in the neuro-immune axis.  相似文献   

16.
17.
Treatment of hepatocytes with either NH4Cl (10mM) or fructose (10mM) blocks insulin's activation of the 'dense-vesicle' cyclic AMP phosphodiesterase. The ability of insulin (10 nM) to decrease intracellular cyclic AMP concentrations raised by glucagon (10 nM) was unaffected by pre-treatment with either NH4Cl (10 mM) or fructose (10 mM). It is concluded that the 'dense-vesicle' enzyme does not play a significant role in this action of insulin and that as yet unidentified cyclic AMP phosphodiesterase(s) must be activated by insulin. Treatment of hepatocytes with either NH4Cl or fructose appeared to increase, reversibly, cyclic AMP phosphodiesterase activity. When N6-(phenylisopropyl)adenosine was used to prevent glucagon from blocking insulin's activation of the plasma-membrane cyclic AMP phosphodiesterase activity, insulin's ability to decrease intracellular cyclic AMP concentrations in glucagon-treated hepatocytes was increased markedly. Insulin's activation of the plasma-membrane cyclic AMP phosphodiesterase activity can exert a potent effect in decreasing intracellular cyclic AMP concentrations elevated by glucagon.  相似文献   

18.
The ability of platelet-derived growth factor and fibroblast growth factor to stimulate the initiation of DNA synthesis in quiescent BALB/c-3T3 cells was enhanced by cholera toxin. However, the addition of cholera toxin to unsupplemented medium was not mitogenic, nor did cholera toxin increase the mitogenic potential of mediuum supplemented with platelet-poor plasma. The enhancement of serum-induced DNA synthesis by cholera toxin was due to a specific effect on competence formation and not plasma-controlled progression. Cholera toxin increased the rate of competence formation during a transient exposure of quiescent cells to platelet-derived growth factor; this rate was further increased by the addition of isobutylmethylxanthine, a cyclic nucleotide phosphodiesterase inhibitor. Intracellular cyclic AMP concentrations in quiescent BALB/c-3T3 cells were increased 2- to 3-fold after the addition of cholera toxin. The addition of cholera toxin plus 30 m?M isobutylmethylxanthine caused an even greater (7- to 8-fold) increase in the cellular levels of cyclic AMP. That these increases in cyclic AMP concentrations mediated at least part of the increased sensitivity of quiescent cells to competence factors was substantiated by the observation that 0.01 to 1 mM monobutrylcyclic AMP or 8-bromocyclic AMP also caused a concentration-dependent potentiation of competence formation in quiescent cells during a transient exposure to platelet-derived growth factor.  相似文献   

19.
Hydrogen sulfide (H2S) has been reported to exert pharmacological effects on neural and non-neural tissues from several mammalian species. In the present study, we examined the role of the intracellular messenger, cyclic AMP in retinal response to H2S donors, sodium hydrosulfide (NaHS) and sodium sulfide (Na2S) in cows and pigs. Isolated bovine and porcine neural retinae were incubated in oxygenated Krebs buffer solution prior to exposure to varying concentrations of NaHS, Na2S or the diterpene activator of adenylate cyclase, forskolin. After incubation at different time intervals, tissue homogenates were prepared for cyclic AMP assay using a well established methodology. In isolated bovine and porcine retinae, the combination of both phosphodiesterase inhibitor, IBMX (2 mM) and forskolin (10 μM) produced a synergistic increase (P < 0.001) in cyclic AMP concentrations over basal levels. NaHS (10 nM–100 μM) produced a time-dependent increase in cyclic AMP concentrations over basal levels which reached a maximum at 20 min in both bovine and porcine retinae. At this time point, both NaHS and Na2S (10 nM–100 μM) caused a significant (P < 0.05) dose-dependent increase in cyclic AMP levels in bovine and porcine retinae. For instance, NaHS (100 nM) elicited a four-fold and three-fold increase in cyclic AMP concentrations in bovine and porcine retinae respectively whilst higher concentrations of Na2S (100 μM) produced a much lesser effect in both species. In bovine and porcine retinae, the effects caused by forskolin (10 μM) on cyclic AMP production were not potentiated by addition of low or high concentrations of both NaHS and Na2S. We conclude that H2S donors can increase cyclic AMP production in isolated neural retinae from cows and pigs. Bovine retina appears to be more sensitive to the stimulatory effect of H2S donors on cyclic nucleotide production than its porcine counterpart indicating that species differences exist in the magnitude of this response. Furthermore, effects produced by forskolin on cyclic AMP formation were not additive with those elicited by H2S donors suggesting that these agents may share a common mechanism in their action on the adenylyl cyclase pathway.  相似文献   

20.
A mouse spleen-derived mast cell line (PT-18) was employed to examine the mechanisms of adenosine 3':5'-monophosphate (cAMP)-mediated inhibition of antigen-induced lipid mediator biosynthesis. Specifically, we tested the hypothesis that increasing cAMP in mast cells inhibits lipid mediator biosynthesis by a mechanism independent of effects on histamine release (degranulation) or changes in cytosolic calcium concentration. Forskolin inhibited antigen-induced prostaglandin D2 (PGD2), leukotriene C4 (LTC4), and leukotriene B4 (LTB4) production by 30-50%. In contrast, forskolin had no inhibitory effect on antigen-induced increases in cytosolic calcium concentration, as monitored by the calcium indicator fura-2, or histamine release from the cells. The combination of the phosphodiesterase inhibitor isobutylmethylxanthine with forskolin inhibited the antigen-induced production of PGD2 and LTC4 by 90-100% and histamine release by about 60%. These responses were accompanied by a virtual abolition of the antigen-induced increase in cytosolic calcium. To test further the hypothesis that increasing cAMP can lead to inhibition of lipid mediator biosynthesis in the absence of effects on cytosolic calcium, we employed the calcium ionophores A23187 and ionomycin. Forskolin alone or in combination with isobutylmethylxanthine had no effect on ionophore-induced increases in cytosolic calcium but effectively inhibited leukotriene biosynthesis. In addition, increasing cyclic AMP led to an inhibition of ionophore-induced production of platelet-activating factor and liberation of arachidonic acid. These data suggest that a relatively modest increase in cAMP-dependent protein kinase activity in mast cells leads to inhibition of the lipase-catalyzed cleavage of arachidonic acid from membrane phospholipids in the absence of measurable effects on either histamine release or changes in cytosolic calcium concentration. This effect results in a selective inhibition of the biosynthesis of lipid mediators including LTC4, LTB4, PGD2, and platelet-activating factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号