首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a field experiment fewer sugar-beet plants became infected with aphid-transmitted yellowing viruses in plots that had been sprayed with solutions of thiabendazole lactate than in water-sprayed plots, after exposure to natural infestation with aphids. Subsequent glasshouse tests showed that foliar sprays of o·o1 % thiabendazole lactate in water significantly reduced the proportion of inoculated sugar-beet plants which became infected with beet yellows virus (BYV) or beet mild yellowing virus (BMYV) after inoculation with viruliferous Myzus persicae (Sulz.). This effect on virus transmission was not apparently due to a direct insecticidal action of thiabendazole, because adult aphids usually survived equally well on sprayed and unsprayed plants. Treatment of test plants with thiabendazole did not affect the transmission of beet mosaic virus to them by M. persicae. The fecundity of M. persicae was greatly reduced by transferring them to plants which had been sprayed with thiabendazole or by spraying them with thiabendazole before transfer to unsprayed plants. The fertility of adult Aphis fabae Scop, was also reduced by spraying with thiabendazole. The mechanisms whereby thiabendazole affected fecundity of aphids and transmission of viruses are not understood.  相似文献   

2.
This paper studies the influence of previous infestation on the host quality of sugar beet (Beta vulgaris L.) for aphids and the influence of previous infestation on sugar beet yellowing virus epidemiology. Sugar beet previously infested with Myzus persicae (Sulzer) or Aphis fabae Scopoli (Homoptera: Aphididae) had an improved host quality for subsequently infesting aphids of the same species. There was a significant negative relationship between the number of M. persicae infesting a plant and the proportion of those that died with a dark deposit in their stomachs, and a significant positive relationship between the number that settled on a plant and the number that infested it previously. Nymphs feeding on previously infested plants grew more rapidly than those on control plants. The beneficial effect of previous infestation persisted for at least 2 weeks and prolongation of the infestation beyond 2 weeks was of no further benefit to the aphids. Field grown sugar beet, previously colonised by M. persicae, was more susceptible to natural infestation by M. persicae up to 5 days after exposure. Previously infested plants were also more susceptible to infection with beet mild yellowing virus (BMYV) but not beet yellows virus (BYV), suggesting that the aphids on the previously infested sugar beet settled more readily and were more inclined to feed (and thus transmit BMYV) than aphids on the previously uninfested plants. The consequences for the control of sugar beet yellowing virus vectors are discussed.  相似文献   

3.
In three field experiments in 1985 and 1986, we studied the effect of the date of primary infection on the spread of beet yellows closterovirus (BYV) and beet mild yellowing luteovirus (BMW) from artificially inoculated sugar beet plants. Laboratory-reared vector aphids, Myzus persicae, were placed on these sources of virus. There was no substantial natural immigration of vectors or viruses. In two experiments, one with BMYV in 1985 and the other in BYV in 1986, populations of vector aphids remained low and there was little virus spread, i.e. c. 50 infected plants from one primarily infected source. The cause of this small amount of spread was the low number of vector aphids. In the third experiment, with BYV in 1986, large populations of M. persicae developed and there was substantial virus spread: c. 2000 infected plants in the plots which were inoculated before canopy closure. In later-inoculated plots in the same experiment, there was much less spread: c. 100 infected plants per virus source plant. Differences between fields in predator impact are implicated as the most probable factor causing differences in vector establishment and virus spread between these three experiments. Virus spread decreased with later inoculation in all three experiments. A mathematical model of virus spread incorporating results from our work has been used to calculate how the initial proportion of infected plants in a crop affects the final virus incidence. This model takes into account the effect of predation on the development of the aphid populations. The processes underlying the spread and its timing are discussed.  相似文献   

4.
Apterous Myzus persicae were found to move frequently from leaf to leaf on sugar-beet plants in controlled environment conditions. It is suggested that aphid movement can be related to changes in the rate and content of translocate flow during leaf development. These changes make newly-emerged leaves nutritionally favourable to colonising aphids and make expanding leaves slowly wane in favourability during the process of ‘sink to source’ conversion leading to aphid dispersal from the leaf. Variation in temperature was not found to alter the rate of aphid movement or the period (measured in thermal time) that aphids spent on particular leaves. However, the lower temperature was found to increase the rate of aphid development, aphid size and fecundity; these effects could also be due to nutritional factors. This dispersal behaviour may be a tactic to maximise food intake by a polyphagous aphid and increase the probability that nymphs are deposited on nutritionally-favourable leaves. The implications of the interleaf dispersal of apterous M. persicae for within- and between-plant spread of beet yellows virus (BYV) and beet mild yellowing virus (BMYV) are discussed.  相似文献   

5.
A purification procedure, which yielded up to 15–30 mg of beet yellows virus (BYV) per 100 g of infected Tetragonia expansa leaves, has been developed. The procedure included sap clarification with Triton X-100, and two cycles of ultracentrifugation through sucrose cushion, which contained PEG-6000 and NaCl. A specific antiserum was prepared, and BYV infection was successfully detected by the double-antibody sandwich (DAS) ELISA in infected sugar beet leaves and roots diluted up to 1 × 105 and 1 × 104, respectively. The virus concentration was demonstrated to decrease in infected sugar beet roots slowly during 7 months, thus allowing successful diagnosis of planting material in winter storage. BYV presence in Myzus persicae aphids was also reliably detectable using the DAS-ELISA. In a competitive DAS-ELISA test, the Ukraine and the British BYV isolates were found serologically indistinguishable.  相似文献   

6.
Differences in resistance to infection with beet yellows virus (BYV) and beet mild yellowing virus (BMYV) have been observed in virus-tolerant sugar-beet breeding material. The results of glasshouse virus-susceptibility tests usually agreed well with those of field experiments in which plants were exposed to artificial, or natural, infestation with viruliferous aphids. Breeding lines and varieties, which showed resistance to BYV when Myzus persicae Sulz, was used as vector, generally showed a similar resistance to this virus when Aphis fabae Scop. was used. Varieties which were resistant to infection with one virus were not necessarily resistant to the other, although some showed resistance to both BYV and BMYV. Preliminary results suggest that resistance to infection may be controlled by recessive genes which occur widely in sugar-beet cultivars. The mechanism of this form of resistance is not understood, but it does not appear to be closely associated with resistance to the aphid vectors of the viruses. The observed differences in resistance to infection demonstrate the possibility of breeding a sugar-beet variety in which two forms of resistance to virus yellows, tolerance and resistance to infection, are combined.  相似文献   

7.
A thin layer of homologous antiserum (against the beet yellows virus - BYV) between the leaf surface and a Parafilm membrane totally inhibited the acquisition of BYV by aphidsMyzus persicae (Sulz.), but it did not affect the inoculation of BYV by infective aphids. BYV transmission decreased with aphids picking up the virus from leaves coated with a normal rabbit serum. Aphids sucking on purified BYV suspension through the Parafilm membrane as well as aphids allowed to probe into leaves of healthy plants spread with an infectious purified BYV suspension failed to transmit BYV. No BYV particles could be detected in eluates from stylets and labia cut off from aphids which had probed on BYV infected plants by electron microscopic examination. The acquisition seems to be the most important phase for the aphid transmission of BYV which is apparently carried on the stylet surface.  相似文献   

8.
Oilseed rape (Brassica napus L. ssp. oleifera) was studied as a potential overwintering host for the sugar-beet yellowing viruses, beet yellows virus (BYV) and beet mild yellowing virus (BMYV), and their principal vector, Myzus persicae. In spring 1982, plants infected with a virus which reacted positively in enzyme-linked immunosorbent assay (ELISA) with BMYV antibody globulin were found in oilseed-rape crops; none of the plants contained virus which reacted with BYV antibody globulin. This virus was subsequently identified as beet western yellows virus (BWYV). No leaf symptoms could be consistently associated with infection of oilseed rape, but the virus was reliably detected by sampling any leaf on an infected oilseed-rape plant. Some isolates from oilseed rape did infect sugar beet in glasshouse tests, but the proportions of inoculated plants which became infected were low. Apparently there is therefore little danger of much direct transmission of BWYV by M. persicae from oilseed rape to sugar beet in spring. BWYV was introduced to and spread within oilseed-rape crops in autumn by M. persicae, and autumn-sown oilseed rape proved to be a potentially important overwintering host for M. persicae. In a survey of 80 autumn-sown crops of oilseed rape in East Anglia, northern England and Scotland in spring 1983, 78 were shown to be extensively infected with BWYV. Experimental plots of oilseed rape with 100% BWYV-infection yielded approximately 13.4% less oil than plots with 18% virus infection, the result of a decrease in both seed yield and oil content.  相似文献   

9.
Results of glasshouse experiments have confirmed that inbred lines of sugar beet differ in each of three types of resistance to Myzus persicae Sulz. and Aphis fabae Scop., namely: resistance to settling, resistance to multiplication, and tolerance. Resistance to multiplication was not invariably associated with resistance to settling, although plants of some lines showed both forms of resistance. Plants that were resistant to settling of alatae were not always resistant to apterae of the same species, and there was not a close relationship between resistance to M. persicae and to A. fabae. The mechanisms involved in resistance to aphids in sugar beet are not understood. Progenies of plants, selected for resistance to aphids from inbred lines, were often more resistant than progenies of unselected plants. Inheritance of each type of resistance is probably polygenic. The potential value of the different kinds of resistance, in reducing direct feeding damage and controlling the spread of virus yellows in the field, is discussed. The ultimate breeding objective is to produce commercial varieties in which appropriate kinds of resistance to aphids are combined with resistance to virus yellows. The use of such varieties would reduce the need to control aphids in the field by applications of chemicals.  相似文献   

10.
Abstract Plants protect themselves against aphid attacks by species‐specific defense mechanisms. Previously, we have shown that Solanum stoloniferum Schlechtd has resistance factors to Myzus persicae Sulzer (Homoptera: Aphididae) at the epidermal/mesophyll level that are not effective against Macrosiphum euphorbiae Thomas (Homoptera: Aphididae). Here, we compare the nymphal mortality, the pre‐reproductive development time, and the probing behavior of M. persicae and M. euphorbiae on S. stoloniferum and Solanum tuberosum L. Furthermore, we analyze the changes in gene expression in S. stoloniferum 96 hours post infestation by either aphid species. Although the M. euphorbiae probing behavior shows that aphids encounter more probing constrains on phloem activities–longer probing and salivation time– on S. stoloniferum than on S. tuberosum, the aphids succeeded in reaching a sustained ingestion of phloem sap on both plants. Probing by M. persicae on S. stoloniferum plants resulted in limited feeding only. Survival of M. euphorbiae and M. persicae was affected on young leaves, but not on senescent leaves of S. stoloniferum. Infestation by M. euphorbiae changed the expression of more genes than M. persicae did. At the systemic level both aphids elicited a weak response. Infestation of S. stoloniferum plants with a large number of M. persicae induced morphological changes in the leaves, leading to the development of pustules that were caused by disrupted vascular parenchyma and surrounding tissue. In contrast, an infestation by M. euphorbiae had no morphological effects. Both plant species can be regarded as good host for M. euphorbiae, whereas only S. tuberosum is a good host for M. persicae and S. stoloniferum is not. Infestation of S. stoloniferum by M. persicae or M. euphorbiae changed the expression of a set of plant genes specific for each of the aphids as well as a set of common genes.  相似文献   

11.
Applications of lithium chloride (LiCl), zinc sulphate (ZnSO4) or nickel sulphate (NiSO4) to the roots of sugar-beet plants in the glasshouse encouraged settling on the leaves of adult apterae from a clone of Myzus persicae (Sulz.); conversely, treatment with boric acid (H2B2O7) inhibited aphid settling. Larviposition of M. persicae was increased by NiSO4 and tin chloride (SnCl2). Viruliferous M. persicae transmitted beet yellows virus (BYV) more efficiently to plants treated with LiCl or H2B2O7 than to those treated with copper sulphate (CuSO4), ZnSO4 or SnCl2. The sulphate and chloride anions of the applied chemicals appeared to have little effect on M. persicae and virus transmission. It is suggested that applications of trace elements to sugar beet affected M. persicae and virus transmission by changing the concentrations of trace elements in the aphids' diet and by altering the metabolism of the leaf tissues in the host plant.  相似文献   

12.
Information on infectivity of the aphids which invade sugar beet root crops each Spring is required for forecasting incidence and providing advice on control of virus yellows. Monoclonal antibodies, produced in the USA to barley yellow dwarf virus (BYDV) and in Canada to beet western yellows virus (BWYV), were used to distinguish between sugar-beet-infecting strains of the luteovirus beet mild yellowing virus (BMYV), and the non-beet-infecting strains of the closely-related BWYV in plant and aphid tissue. Totals of 773 immigrant winged Myzuspersicae and 124 Macrosiphum euphorbiae were caught in water traps in a crop of sugar beet between 25 April and 5 August 1990. Using the monoclonal antibodies and an amplified ELISA, 67%M. persicae and 19%M. euphorbiae were shown to contain BWYV; 8%M. persicae and 7%M. euphorbiae contained BMYV. In studies with live winged aphids collected from the same sugar beet field during May, 25 of 60 M. persicae and two of 13 M. euphorbiae transmitted BWYV to the indicator host plant Montia perfoliata; two M. persicae and two M. euphorbiae transmitted BMYV. In another study three of 65 M. persicae and one of three M. euphorbiae in which only BWYV was detected, transmitted this virus to sugar beet.  相似文献   

13.
Myzus persicae transmitted soybean mosaic virus (SMV) most efficiently following 30 or 60 s acquisition probes on infected plants. There were no differences in susceptibility to SMV infection of soybean plants 1 to 12 wk old, but symptoms were more severe in plants inoculated when young than when old. Soybeans inoculated between developmental stages R3 and R6 only showed yellowish-brown blotching on one or more leaves. There were no observable differences in the time of appearance or type of symptoms shown by soybean seedlings inoculated either by sap or by aphids; infected plants became acquisition hosts for aphids 5–6 days after inoculation. There was no change in the efficiency with which M. persicae transmitted SMV from source plants up to 18 wk after inoculation. M. persicae transmitted SMV from leaves of field-grown soybeans when plants were inoculated at developmental stages V6, R2, and R3 and tested as sources 57–74 days after inoculation but not from plants inoculated at R5 and tested as sources 14 to 32 days after inoculation. M. persicae acquired SMV from soybean buds, flowers, green bean pods, and unifoliolate, trifoliolate, and senescent leaves. Middle-aged and deformed leaves were better sources of the virus than buds, unfolding and old symptomless leaves. The results are being incorporated into a computer model of SMV epidemiology.  相似文献   

14.
Abstract: Three questions regarding possible benefits of mixed diets for the specialist aphid predator, Coccinella septempunctata larvae were investigated. (1) Do aphids species from different host plants complement each other nutritionally? (2) Is a mixed diet of high‐quality aphids beneficial? (3) How does the quality of mixed diets depend on the quality of constituent species? All mix‐combinations of aphid species of high (Metopolophium dirhodum), intermediate (Myzus persicae), and poor food quality (Aphis sambuci), and the three single‐species diets were compared. A mixed diet of two high‐quality species (Sitobion avenae and M. dirhodum) was also compared with single‐species diets. Larvae that were given pure A. sambuci and a mixed diet of A. sambuci + M. persicae died within 18 days and none of the larvae developed to fourth instar. Metopolophium dirhodum was generally of higher quality as food than M. persicae, whereas the mixed diet of M. dirhodum + M. persicae was intermediate. Sitobion avenae and M. dirhodum were found to have approximately the same food value. Coccinella septempunctatam larvae that were offered a mixed diet of these two high‐quality aphids gained no extra advantage. Overall, no benefit from mixing of aphid species was found. The quality of mixed diets depended on the quality of the constituent species.  相似文献   

15.
Survival of Myzus persicae confined in clip-cages on mature leaves of sugar beet declined as the plants aged. Death of aphids was often preceded by the appearance of a black deposit in the aphids' stomachs, which may have been the cause of death. Both the rate of death and the proportion of aphids dying with black deposits was significantly less when plants were infected with beet yellows virus or beet mild yellowing virus, by comparison with healthy plants. The implication of these phenomena on the onset of mature plant resistance is discussed.  相似文献   

16.
Presumptive gynoparae of Aphis fabae and Myzus persicae were exposed to various levels of kinoprene (Zoecon's ZR 777) by being placed as 4th-instar alatiform larvae on bean or radish seedlings that had been sprayed with different concentrations of kinoprene in an acetone-tween-water emulsion. Larvae exposed to the highest (0.1%) concentration tested developed into adults 1 to 2 days sooner than those on control plants. The adults on the treated plants had variously deformed wings, reduced sclerotization (and pigmentation in the case of M. persicae) and other apteriform features. On reaching adulthood the affected aphids settled to feed and started to larviposit some days earlier than the control aphids. After two weeks as adults, treated gynoparae of M. persicae produced more larvae than the 7 to 9 typically deposited by control gynoparae under the short-day and cool temperature conditions employed in these tests.Whereas most or all of the larvae produced by the control gynoparae developed into oviparae (apterous, egg-laying, sexual females), gynoparae exposed to 0.1% kinoprene-treated plants predominantly produced alatiform viviparous offspring. If the latter were allowed to develop on untreated plants they deposited a few oviparous larvae. Alatiform virginoparae of M. persicae (from the same holocyclic strain that produced the gynoparae) also responded to kinoprene by developing wing deformities and by producing alatiform offspring. In contrast, alatiform virginoparae from an androcyclic strain of M. persicae, although developing wing deformities, produced only apterous progeny.The stimulation by kinoprene of wing development and parthenogenesis in the progeny of treated gynoparae is discussed in the light of our present knowledge of these aspects of aphid polymorphism.  相似文献   

17.
The potential of predators to impact the establishment of aphid vectors and the spread of beet yellows virus in sugar beet was examined. Myzus persicae carrying beet yellows virus (BYV) were released on six interior sites and six edge sites in each of four fields at the end of May. Aphids established at low densities and BYV was spread in circular patches around the infested plants at all sites. The number of diseased plants per patch at the end of September ranged from a field-average of 130 to 210 in the four fields. There was a weak tendency towards better aphid establishment and greater virus spread in fields in less complex landscapes. Edge sites had less virus spread than interior sites in one field, more virus spread in two other fields, and there was no statistically significant difference in the fourth field. In the field where virus spread was lowest at edge sites, we used predator exclosure and direct observation to manipulate and quantify the effects of early season predation. On a warm day in early June, 81% ofAphis fabae exposed to predators on young beet plants disappeared during a 24 h period, compared to 10% of aphids protected by clipcages. Intermediate levels of predator exclusion, allowing aphids to walk away but restricting predator access, showed that predation was responsible for aphid disappearance.Cantharis lateralis L. (Coleoptera: Cantharidae) was the most frequently observed foliar predator (>90%). It was found eating aphids on several occasions. The incidence of predators was 1.8 per plant per h in the field interior and 3.8 per plant per h. near the edge. In the same field, aphids and virus were released in six edge and six interior sites, that were surrounded by 0.5 m high plastic open-top barriers (‘exclosures’). Pitfall trapping inside the barriers reduced potential soil predator densities to ca. one-tenth of the open field level and arrivals of flying predators were reduced. Inside the exclosures, aphid establishment was enhanced, and virus spread at exclosure sites was increased by about 50% compared to open sites. Foliar and pitfall sampling yielded the following predators:Cantharis lateralis, C. rufa L. (Coleoptera: Cantharidae),Coccinella septempunctata L.,C. undecimpunctata L. (Coleoptera: Coccinellidae),Pterostichus cupreus (L.),Harpalus rufipes (de Geer),Patrobus atrorufus (Strom),Trechus quadristriatus (Schrk.),Bembidion lampros (Herbst) (Coleoptera: Carabidae). In a laboratory no-choice trial (with 10M. persicae /day offered), each of these species ate aphids with consumption rates varying from 1.7 to 9.2 aphids/day. The results show that early predation substantially impacted aphid establishment in one field, and resulted in reduced virus spread. Results in the other fields show that these results cannot be easily generalized.  相似文献   

18.
T.-Y. Chen  T.-X. Liu 《BioControl》2001,46(4):481-491
Relative consumption of three aphid species, Aphis gossypii Glover, Myzus persicae (Sulzer) and Lipaphis erysimi (Kaltenbach) (Homoptera: Aphididae), by larvae of the lacewing, Chrysoperla rufilabris (Burmeister) (Neuroptera: Chrysopidae), was determined in the laboratory, together with effects on lacewing development and survival. Percentages of survival of C. rufilabris from first instar to adult eclosion were significantly different among lacewing larvae fed different aphid species. When larvae were fed A. gossypii and M. persicae, all larvae developed to adulthood. All larvae died prematurely when they were fed L. erysimi. Developmental duration of C. rufilabris larvae was significantly shorter when larvae were fed A. gossypii (18.0 d) than when larvae were fed M. persicae (19.2 d). The number of fourth instar aphids consumed during development by C. rufilabris larvae differed significantly among individuals fed different aphid species. Chrysoperla rufilabris consumed an average of 168 M. persicae, followed by 141.6 A. gossypii, and only 26.6 L. erysimi. The percentage of these total number of aphids consumed by each larval stadium of C. rufilabris varied significantly among aphid species. The percentage of A. gossypii consumed by each larval stadium was similar to that for M. persicae, 12.1 and 11.4% by the first instar, 15.7 and 13.1% by the second instar, and 72.2 and 75.5% by the third instar, respectively; whereas in the case of L. erysimi, 23.3% of the total number of aphids were consumed by the first instar, 30.1% by the second instar, and 46.6% by the third instar.  相似文献   

19.
1 The two most common species of aphid colonizing sugar beet Beta vulgaris L. are Myzus persicae (Sulzer) (Hemiptera: Aphididae) and Aphis fabae Scopoli (Hemiptera: Aphididae). 2 M. persicae colonizes sugar beet earlier than A. fabae but the population of the former also declines earlier. Despite similar numbers of each species migrating at the time of colonization, M. persicae is usually less abundant on the crop than A. fabae, suggesting differences between the species in their selection of, and performance on, sugar beet. 3 The intrinsic rate of increase of both species declines as sugar beet matures, however, at any given plant age the intrinsic rate of increase of A. fabae is one and a half times greater than that of M. persicae. This results in more rapid population growth and a later decline of the population. 4 Intraspecific competition appears to result in M. persicae becoming very restless, but there is no evidence for interspecific competition between the two species on this host. 5 A population growth model which takes account of the decline in host quality of sugar beet shows that the M. persicae population peaks 30 days before that of A. fabae, and, excluding differences in emigration rate, the maximum A. fabae population is 14 times greater than the maximum M. persicae population. These results are compared to field data.  相似文献   

20.
When turnip plants with 3–7 leaves were inoculated with cabbage black ringspot virus (CBRSV) on the 3rd rough-leaf, symptoms only appeared on leaves that had been less than 15 mm long at the time of inoculation, although infection decreased the area and both fresh and dry weight of all leaves. Leaves were ‘aged’ by their appearance and placed in Leaf Age Categories (LACs). Leaves with symptoms senesced (‘aged’) prematurely. CBRSV-infection of cv. Green Top White did not change the distribution of populations of Myzus persicae between LACs, but increased the proportion of the plant suitable for colonisation. All suitable LACs were quickly colonised by adult apterae and nymphs. On CBRSV-infected plants the nymphal period was shorter, F1 adults deposited larvae more frequently and the live body weight and tibial length of the F2 generation was greater, than on healthy plants. The distribution of Brevicoryne brassicae populations on cv. Green Top White differed from that of M. persicae but was also unchanged by CBRSV-infection. On healthy plants the largest colonies were on mature leaves, so that on virus-infected plants premature senescence shortened the life of the colony. On CBRSV-infected plants the nymphal period was prolonged and the live weight of F1 and F2 adult apterae was less than on healthy plants. The differences between the biology of M. persicae and B. brassicae on CBRSV-infected cv. Green Top White were associated with the accelerated senescence of CBRSV-infected leaves. The possibility that CBRSV-infection might reduce the resistance of turnips to aphid infestation was tested. M. persicae and B. brassicae were cultured on two favourable and two less favourable cultivars. No improvement in population growth rate was found when the less favourable host cultivars were infected with CBRSV, but both aphid species weighed less and/or had smaller nymphal populations on cultivars showing the severest symptoms. These results are discussed in relation to the evolution of non-persistent virus transmission by aphids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号