首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After mating, females may experience a decline in sexual receptivity and attractiveness that may be associated with changes in the production and emission of sex pheromones. In some cases, these changes are produced by chemical substances or structures (e.g., mating plugs) produced by males as a strategy to avoid or reduce sperm competition. In scorpions, sex pheromones may be involved in finding potential mates and starting courtship. Here, we tested the hypothesis that the males of Urophonius brachycentrus, a species that produces a mating plug, use chemical communication (sex pheromones) to detect, localize, and discriminate females according to their mating status (virgin or inseminated), aided by chemical signaling. We also explored the effect of extracting of the mating plug on chemical communication and mating acceptance. We used Y‐maze olfactometers with different stimuli to analyze male choice and exploration time. To evaluate mating acceptance, we measured the attractiveness and receptivity of females of different mating status. We found that chemical communication occurs through volatile pheromones, but not contact pheromones. Males equally preferred sites with virgin or inseminated females with removed mating plug. In turn, females with these mating statuses were more attractive and receptive for males than inseminated females. This study suggests that the mating plug significantly affects female chemical attractiveness with an effect on volatile pheromones and decreasing sexual mating acceptance of females. The decline in the female's sexual receptivity is a complex process that may respond to several non‐exclusive mechanisms imposed by males and strategically modulated by females.  相似文献   

2.
ABSTRACT. From the host plant-spider mite complex Phaseolus lunatus—Tetranychus urticae Koch a volatile chemical is emitted that acts as a kairomone for the predatory mite Phytoseiulus persimilis Athias-Henriot (Sabelis et al. , 1984a). This kairomone is apparently a byproduct of a vital physiological process and/or it has a function in the biology of the spider mite as well.
The spider mite—host plant complex also emits a volatile spider-mite dispersing pheromone. This is shown in the present study where spider mites were introduced into an odour patch on a horizontal screen in a vertical airflow olfactometer. When spider-mite infested leaves of Lima bean are offered, the spider mites walk mainly straight and soon reach the edge of the screen. On the other hand, when clean Lima bean leaves are offered, the mites walk tortuously most of the time and reach the edge of the screen much later. Artificially damaged plants elicit the same response as undamaged plants. Differences in spider-mite behaviour are observed in the vertical airflow olfactometer when odour of either clean or spider-mite infested leaves is offered. A comparison of the behaviour in these two situations with that when no odour was offered suggests that Lima bean leaves emit a volatile kairomone that activates T. urticae and makes them return after losing the stimulus. A Y-tube olfactometer experiment confirms the existence of this kairomone.
At a low ratio of dispersing pheromone to plant kairomone, the spider mites behave as if only kairomone is present, walking mainly tortuously. At a high ratio they disperse. No aggregation-pheromonal effect is observed.
The possibility that the spider-mite dispersing pheromone acts as a kairomone for P. persimilis is discussed.  相似文献   

3.
Summary We measured the effects ofEriophyes laevis mite galls on the relative growth of short shoot leaf area ofAlnus glutinosa. A portion of leaves was artificially removed from a set of short shoots with both high and low gall density to cause local stress conditions. Nontreated high and low gall density short shoots were used as controls. The results show that the relative growth of leaf area measured for short shoots is negatively affected by high gall density. Artificial leaf removal, on the other hand, had positive effects on leaf area growth. Interestingly, the growth of leaf area did not differ for high gall density short shoots with leaf removal and noninfested short shoots with no leaf removal. This result may be caused by the combined, opposite effects of leaf removal and gall infestation.  相似文献   

4.
Phoretic associations between mites and insects commonly occur in patchy and ephemeral habitats. As plants provide stable habitats for herbivores, herbivorous mites are rarely dependent on other animals for phoretic dispersal. However, a phoretic gall mite, Aceria pallida, which is found on plants, seasonally attaches to a herbivorous insect, Bactericera gobica, for overwintering survival. After detachment, the gall mite shares a habitat with its vector and is likely to compete with this vector for plant resources. However, excessive competition works against the sustainability of the seasonal phoretic association. How the gall mite, as an obligate phoretic mite, balances this relationship with its vector during the growing season to achieve phoresy is unknown. Here, the plant-mediated interspecific interaction between the gall mite and the psyllid after detachment was studied in the laboratory and field. The laboratory results showed that infestation by the gall mite had detrimental effects on the survival and development of psyllid nymphs. Meanwhile, the mite population and the gall size were also adversely affected. The results from the field showed that the mean densities of the mite galls and psyllids were lower in the mixed-species infestation treatment than in the single-species infestation treatment across the investigation period. However, the interspecific interaction between the gall mite and the psyllid decreased rather than accelerated leaf abscission caused by the psyllid, which promoted the persistence of the psyllid population and then indirectly contributed to phoretic association. Our results suggest that the plant-mediated competition between the phoretic gall mite and its vector after detachment facilitates the maintenance of the phoretic association.  相似文献   

5.
SOME ASPECTS OF THE MORBID ANATOMY OF PLANTS   总被引:1,自引:0,他引:1  
The anatomical modifications in the tissues of plants caused by the action of gall-inducing fungi and insects are illustrated by a number of examples, and compared with those produced by various processes of regeneration and wound healing or by factors that lead to anatomical changes without the intervention of wounds, such as nutrition, humidity, and the like. It is concluded that all living cells have the potentiality to react to various stimuli by hypertrophy, hyperplasy, or the development of meristeroatic tissues, and that the pre-existing meristems are not, of necessity, primarily implicated in gall formation.  相似文献   

6.
The host specificity of the gall mite,Aceria (Eriophyes) malherbe (Nalepa), from Greece was studied under quarantine conditions at Albany, California USA. Of the species, ecotypes, or strains tested, onlyConvolvulus andCalystegia spp. supported gall formation and mite reproduction. Although 2 of the native, North AmericanCalystegia species that served as laboratory hosts are threatened or endangered species,A. malherbe is considered safe for release in the USA as a biological control agent of the weed,Convolvulus arvensis (L.).   相似文献   

7.
Diseases of Mites   总被引:6,自引:0,他引:6  
An overview is given of studies on diseases of mites. Knowledge of diseases of mites is still fragmentary but in recent years more attention has been paid to acaropathogens, often because of the economic importance of many mite species. Most research on mite pathogens concerns studies on fungal pathogens of eriophyoids and spider mites especially. These fungi often play an important role in the regulation of natural mite populations and are sometimes able to decimate populations of phytophagous mites. Studies are being conducted to develop some of these fungi as commercial acaricides.Virus diseases are known in only a few mites, namely, the citrus red mite and the European red mite. In both cases, non-occluded viruses play an important role in the regulation of mite populations in citrus and peach orchards, respectively, but application of these viruses as biological control agents does not seem feasible. A putative iridovirus has been observed in association with Varroa mites in moribund honeybee colonies. The virus is probably also pathogenic for honeybees and may be transmitted to them through this parasitic mite.Few bacteria have been reported as pathogens of the Acari but in recent years research has been concentrated on intracellular organisms such as Wolbachia that may cause distorted sex ratios in offspring and incompatibility between populations. The role of these organisms in natural populations of spider mites is in particular discussed. The effect of Bacillus thuringiensis on mites is also treated in this review, although its mode of action in arthropods is mainly due to the presence of toxins and it is, therefore, not considered to be a pathogen in the true sense of the word.Microsporidia have been observed in several mite species especially in oribatid mites, although other groups of mites may also be affected. In recent years, Microsporidia infections in Phytoseiidae have received considerable attention, as they are often found in mass rearings of beneficial arthropods. They affect the efficacy of these predators as biological control agent of insect and mite pests. Microsporidia do not seem to have potential for biological control of mites.  相似文献   

8.
Ribosomal DNA from Cecidophyopsis mites from different Ribes species was amplified using the polymerase chain reaction and the products digested using restriction enzymes. After separating the DNA fragments on gels, it was possible to identify specimens of mites obtained from field samples by comparing the profiles of their DNA banding patterns with those of known Cecidophyopsis species. Using this analysis, a non-gall forming mite found infesting blackcurrant buds in New Zealand was identified as the gooseberry mite (C. grossulariae). On wild red currant (Ribes spicatum) from Finland showing two sizes of galled buds, the red currant gall mite (C. selachodon) was identified in the larger galls located at the tips of branches and a distinct mite in the smaller galls located on the lower parts of the branches. A mite with a DNA banding profile indistinguishable from this latter mite from R. spicatum was also identified in galled buds of blackcurrant genotypes growing in Finland, including those containing the blackcurrant gall mite (C. n'ftw)-resistance genes P or Ce. The DNA banding profile of this mite resembled most closely that of C. ribis , but was distinct from it. The occurrence of C. grossulariae and this distinct Cecidophyopsis mite on blackcurrant has implications for the genetic control of Cecidophyopsis mites and possibly for the spread of the reversion disease agent in this crop.  相似文献   

9.
The grape berry moth (GBM), Paralobesia viteana (Clemens) (Lepidoptera: Tortricidae), is a specialist pest insect of cultivated grape, Vitis spp. (Vitaceae), in the eastern USA. A blend of volatile compounds has been isolated from plant material that attracts female GBM in the flight tunnel and field. However, the origin of the volatile cue is potentially complicated by the presence of microbes (bacteria and fungi) living on the surface of the plant. Microbial volatile organic compounds can affect insect behavior, and therefore must be considered to fully understand olfaction‐mediated behaviors. We report here the chemical and behavioral analysis of the volatile profiles produced from both the sanitized and control shoot treatments. The sanitization treatment removed 96.4% of the surface microbes up to 24 h, covering the duration of the behavioral assays and volatile collections. Overall, the surface microbes did not significantly contribute to the volatile profile of the grape shoots, as all of the peaks in the volatile profile of sanitized shoots were found in the profile of control shoots. In flight tunnel assays, female GBM displayed the same level of upwind oriented flight to sanitized shoots (flew upwind 57.4%, landed 30.9%) as they did to control shoots (flew upwind 57.8%, landed 31.0%), suggesting further that surface microbes did not contribute to the production of the previously identified blend of behaviorally active volatiles for GBM.  相似文献   

10.
11.
Pseudomonas syringae pv. phaseolicola , a phytopathogenic bacterium, seemed very sensitive in planta to the adverse action of reactive oxygen species (ROS) produced by two chemical systems. The disease symptoms in host plants were also suppressed by ROS. Several other plant pathogenic bacteria ( P. syringae pv. pisi, Erwinia amylovora, Xanthomonas campestris pv. pelargonii ) as well as P. fluorescens were also sensitive in vitro to the inhibiting or killinig action of ROS. It was shown that O2 and H2O2 were produced in our two chemical systems and were involved in the killing action. OH'however was not involved in the adverse action on bacteria of the ROS. Superoxide dismutase and catalase were able to reverse the killing action of ROS. When the EPS slime around bacteria was removed by washing and centrifuging the cells, bacteria were more sensitive to ROS. However, when the cells of EPS- mutants were washed and centrifuged, their sensitivity to the killing action of ROS did not change because the lack of slime around the mutant cells.
The EPS- Tn5 mutants of P. syringae pv. phaseolicola and the natural EPS- mutant of E. amylovora were more sensitive to ROS than the wild type strains. These results support the idea that the EPS slime protects bacteria from ROS (O-2 and H2O2).  相似文献   

12.
In this investigation of the fungi of the soil of the Dovey Salt Marshes (Ynyslas) 48 fungi were isolated.
Twelve of the species found do not appear to have been recorded before for the British Isles.
The area investigated is a badly aerated, stiff, tenacious clay, alkaline in reaction ( p H 8), with a high water content, due mainly to periodical inundations by tidal salt water.
Method of investigation consisted in taking samples of soil from a depth of 11/2 and 31/2 inches and either planting portions of this directly on to specially prepared media, or first shaking up a portion in water and then inoculating the prepared media with some of the suspension.
Three fungi– Torula allii, Penicillium hyphomycetis and Fusarium oxysporium var. resupinatum —were almost invariably present in every sample of soil: almost equally common were Trichoderma lignorum, T. Köningi, Hormodendron cladosporoides, Mucor circinelloides and Periconia felina .
Most of the fungi found are species found above ground as saprophytes, and may have been introduced into the soil by drainage, etc.
The writer considers fungi are active only in association with organic material.
The vegetation covering this marsh shows marked zonation: soil samples were chiefly taken from the Glycerietum and Aimerietum.
The same species of fungi were common to the two associations.
Glyceria maritima is a most effective silt binder, because the stele of its rhizomes and roots consists almost entirely of lignified tissue which does not yield to the activities of the soil fungi; Armeria maritima is not so effective a silt binder because the stele of its rhizomes and roots contains very little lignified tissue—at a depth of a foot, the tap roots of Armeria are little more than hollow tubes, the interiors having been removed by fungi and bacteria.  相似文献   

13.
An assessment was made of the response of 10 blackcurrant genotypes, differing in resistance to the agent of blackcurrant reversion disease (BRD) and to its gall mite vector, in field trials in Scotland and Finland over 5 yr. At each location, the 10 genotypes were planted in plots containing infector plants with high inoculum levels of the two organisms. In Scotland, the infector plants contained large numbers of gall mites (Cecidophyopsis ribis) and were infected with the European (E) form of BRD; in Finland, infector plants contained a different species of gall mite (C. spicata) and the severe Russian form (R) of BRD. As expected, at both sites, almost all plants of cvs Ben Alder, Ben Lomond, Ben Tirran, Ojebyn and an SCRI selection F4/1/66, which are susceptible to gall mite and BRD, became infested with each of these organisms. However, in Scotland but not in Finland, 58% of cv. Ojebyn plants were affected by BRD. The cv. Foxendown, which contains gene Ce that confers apparent immunity to C. ribis, was free from galls and failed to develop distinctive BRD symptoms at both sites. The cvs Rus and Neosypajuscajaija, which contain gene P which is reported to confer resistance to C. ribis, were infested more slowly by mites than the mite-susceptible genotypes and showed a smaller number of galls per plant. Also, they were infected with BRD more slowly than some mite-susceptible genotypes although by the end of the experiment, most plants were affected by BRD. All plants of cvs Golubka and Ben Gairn, which are resistant to the agent of BRD, remained free from distinct BRD symptoms at both sites despite the fact that plants contained galls. These data indicate the superiority of gene Ce over gene P for resistance to gall mites with the added benefit that the virtual immunity to gall mites provided by gene Ce provides a high level of protection against infection with BRD. The relative merits of these different forms of resistance to gall mites and BRD in blackcurrant are discussed in relation to present control methods for these two organisms and in the light of recent findings of different species of eriophyid mites on Ribes species.  相似文献   

14.
In the course of investigation of Trichothecium roseum (Fungi Imperfecti) for its attractancy against Tyrophagus putrescentiae (cheese mite), the twenty following volatile compounds produced at a very low concentration by the microfungus were identified by gc, gc/ms, gc/c.i.ms and tlc: 3-methyl-1-butanol, 3-octanone, 1-octen-3-one, 3-octanol, octa-1,5-dien-3 one, 1-octen-3-ol, 6-methyl-5-hepten-2-ol, octa-1,5-dien-3 ol, furfural, linalool, linalyl acetate, terpineol (alpha and beta) citronellyl acetate, nerol, citronellol, phenylacetaldehyde, benzyl alcohol geranyl acetate, 1-phenyl ethanol and nerolidol. Octa-1,5-dien-3-ol and octa-1,5-dien-3-one have not been previously isolated from fungi; octa-1,5-dien-3-ol is the most potent attractant amount the volatile compounds detected by gc.  相似文献   

15.
为探索宁夏枸杞对枸杞瘿螨致瘿过程诱导的激素响应及外源水杨酸对枸杞瘿螨的影响,利用LC-MS/MS技术对枸杞瘿螨为害后宁夏枸杞叶片中水杨酸(SA)、茉莉酸(JA)、生长素(Auxin)和脱落酸(ABA)4种内源激素进行测定,并通过浸叶法研究外源SA对枸杞瘿螨侵染过程、虫瘿生长和种群增长的影响。结果表明: 枸杞瘿螨的致瘿行为可引发枸杞叶片中多种内源激素产生变化,其中SA和JA的变化最显著,分别是对照组含量的4.0和13.0倍,而Auxin和ABA的变化不显著;外源SA对枸杞瘿螨虫瘿生长有显著抑制作用,且随时间的延长,抑制作用增强,同时虫瘿内瘿螨种群数量受到显著抑制。枸杞瘿螨能够同时诱导枸杞产生SA和JA抗性,外源SA对枸杞瘿螨虫瘿生长和瘿螨种群数量均具有显著抑制作用,利用外源SA防治枸杞瘿螨具有一定的应用前景。  相似文献   

16.
17.
The fitness benefits of plant structural adaptations that increase the effectiveness of fungivores against leaf pathogenic fungi are poorly understood. In a 12‐month field experiment, we investigated the effect of domatia on mite density, the role of these mites in limiting leaf fungi, and the associated effects on plant fitness in the endemic New Zealand shrub, Coprosma lucida. The presence of domatia on mite density was controlled using combinations of domatia blocking, sham blocking, mite addition and mite control using miticide. Limiting access to domatia reduced mite density and increased the proportion of leaves without mites. Mite families represented were predominantly fungivorous/detritivorous (97.2%), and predaceous (2.6%); herbivorous mites were absent. Mites significantly reduced fungal hyphae, fungal spores and pollen, but the effect was surface‐(upper/lower) and density‐dependent with the greatest reduction in fungi occurring over low mite densities. Fungal hyphae reduced leaf longevity, but were associated with increased production of new leaves. Hyphae density on old leaves was negatively correlated with the number of domatia produced on new leaves. New leaves in the mite reduction treatment had slightly reduced levels of carbon but not nitrogen. High levels of fungal infection on the lower surface increased the number of fruit fascicles per shoot, however on the upper surface where fungi were reduced by mites, hyphae density was negatively related to reproduction. The data support a limited interpretation of a fitness benefit for plants with domatia. While domatia increased mite density, control of fungi by mites occurred at lower average densities than supported by plants without functioning domatia. We suggest the primary function of leaf domatia in this mutualism is to increase the probability of a leaf‐level beneficial mite presence rather than to maximise mite density. Many mites are not necessarily better than few mites, but some mites are better than none.  相似文献   

18.
The Enemy hypothesis is a theoretical framework for understanding the adaptive nature of galls induced in host plants by insects. Contrary to other gall inducing insects, like Cynipids or sawflies, this hypothesis has not been studied for the gall aphids on pistachio trees in the Middle East. Galls on plants are supposed to protect their inducers from other organisms, including herbivores feeding on the host plant and possibly feeding on the gall tissue. Assuming that among aphid enemies there are numerous insects which have to perforate the gall wall to access the aphids inside, determining whether the gall wall has anti-insect properties should be one of the first steps in dealing with this hypothesis. In the present research using Baizongia pistaciae [L.], an aphid that creates perfectly closed galls in Pistacia palaestina Boiss, laboratory experiments were first conducted on a herbivore, the stored grain pest, Tribolium castaneum Herbst, to assess chemical anti-insect activities of the gall tissue, and an effort was made to understand why these properties do not harm the aphids inside the gall. Addition of fresh gall tissue to food reduced the population growth of flour beetles. Non-polar organic extracts had contact toxicity for larvae of these insects, and an impact on the feeding preferences of the adults. These results indicate chemical anti-insect activities of the gall tissue. The research also reveals that the permeability of the gall wall to non-polar volatile compounds is important to the survival of the aphids inside the gall cavity. These findings do not allow us to reject the Enemy hypothesis in the gall-inducing aphids/Pistacia trees interactions.  相似文献   

19.
Field and insectary tests confirmed that the black-currant gall mite (Cecidophyopsis ribis) is unable to survive on gooseberry and red currant. A dominant gene Ce, controlling resistance to the gall mite, has been transferred from gooseberry to black currant. Resistant, large-fruited, self-fertile black currants of commercial potential have been obtained in the third backcross. One accession of Ribes bracteosum and three of R. americanum proved field susceptible to the gall mite, but twenty-four accessions of other Ribes species remained free from galled buds for at least 3 years in an infection plot.  相似文献   

20.
Summary Crown gall cells of several plant species contain considerably more endoplasmic reticulum than their normal or hyperplastic counterparts. This characteristic appears to be stable even in crown gall tissues grownin vitro for many years. No evidence for the presence of an etiological agent was found in any of the crown gall cells, nor was there any evidence of any structure peculiar to these cells. It is not possible at this time to determine if this increase in endoplasmic reticulum is responsible for the increased biosynthetic capacities of tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号