首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upon addition of GTPgammaS to in vitro budding reactions, COP I vesicles form but retain their coat, making them easy to isolate and analyze. We have developed an in vitro budding assay that reconstitutes the formation of COP I-derived vesicles under conditions where GTP hydrolysis can occur. Once formed, vesicles are uncoated and appear functional as they fuse readily with acceptor membranes. Electron microscopy shows a homogeneous population of uncoated vesicles that contain the medial/trans Golgi enzyme alpha1, 2-mannosidase II. Biochemical quantitation of vesicles reveals that resident Golgi enzymes are up to 10-fold more concentrated than in donor membranes, but vesicles formed in the presence of GTPgammaS show an average density of resident Golgi enzymes similar to that seen in donor membranes. We show that the sorting process is mediated by the small GTPase arf-1 as addition of a dominant, hydrolysis-deficient arf-1 (Q)71(L) mutant produced results similar to that of GTPgammaS. Strikingly, the average density of the anterograde cargo protein, polymeric IgA receptor, in COP I-derived vesicles was similar to that found in starting membranes and was independent of GTP hydrolysis. We conclude that hydrolysis of GTP bound to arf-1 promotes selective segregation and concentration of Golgi resident enzymes into COP I vesicles.  相似文献   

2.
Secretory proteins enter the Golgi apparatus when transport vesicles fuse with the cis-side and exit in transport vesicles budding from the trans-side. Resident Golgi enzymes that have been transported in the cis-to-trans direction with the secretory flow must be recycled constantly by retrograde transport in the opposite direction. In this study, we describe the functional characterization of Golgi-derived transport vesicles that were isolated from tissue culture cells. We found that under the steady-state conditions of a living cell, a fraction of resident Golgi enzymes was found in vesicles that could be separated from cisternal membranes. These vesicles appeared to be depleted of secretory cargo. They were capable of binding to and fusion with isolated Golgi membranes, and after fusion their enzymatic contents most efficiently processed cargo that had just entered the Golgi apparatus. Those results indicate a possible role for these structures in recycling of Golgi enzymes in the Golgi stack.  相似文献   

3.
The unexpected discovery of a transport pathway from the Golgi to the endoplasmic reticulum (ER) independent of COPI coat proteins sheds light on how Golgi resident enzymes and protein toxins gain access to the ER from as far as the trans Golgi network. This new pathway provides an explanation for how membrane is recycled to allow for an apparent concentration of anterograde cargo at distinct stages of the secretory pathway. As signal-mediated COPI-dependent recycling also involves the concentration of resident proteins into retrograde COPI vesicles, the main bulk of lipids must be recycled, possibly through a COPI-independent pathway.  相似文献   

4.
The role of vesicles in cargo transport through the Golgi apparatus has been controversial. Large forms of cargo such as protein aggregates are thought to progress through the Golgi stack by a process of cisternal maturation, balanced by a return flow of Golgi resident proteins in COPI-coated vesicles. However, whether this is the primary role of vesicles, or whether they also serve to transport small cargo molecules in a forward direction has been debated. Two papers (Martínez-Menárguez et al., 2001; Mironov et al., 2001, this issue) use sophisticated light and electron microscopy to provide evidence that the vesicular stomatitis virus membrane glycoprotein (VSV G)* is largely excluded from vesicles in vivo, and does not move between cisternae, whereas resident Golgi enzymes freely enter vesicles as predicted by the cisternal maturation model. Both papers conclude that vesicles are likely to play only a minor role in the anterograde transport of cargo through the Golgi apparatus in mammalian tissue culture cells.  相似文献   

5.
A cisternal progression mode of intra-Golgi transport requires that Golgi resident proteins recycle by peri-Golgi vesicles, whereas the alternative model of vesicular transport predicts anterograde cargo proteins to be present in such vesicles. We have used quantitative immuno-EM on NRK cells to distinguish peri-Golgi vesicles from other vesicles in the Golgi region. We found significant levels of the Golgi resident enzyme mannosidase II and the transport machinery proteins giantin, KDEL-receptor, and rBet1 in coatomer protein I-coated cisternal rims and peri-Golgi vesicles. By contrast, when cells expressed vesicular stomatitis virus protein G this anterograde marker was largely absent from the peri-Golgi vesicles. These data suggest a role of peri-Golgi vesicles in recycling of Golgi residents, rather than an important role in anterograde transport.  相似文献   

6.
COP I and COP II coat proteins direct protein and membrane trafficking in between early compartments of the secretory pathway in eukaryotic cells. These coat proteins perform the dual, essential tasks of selecting appropriate cargo proteins and deforming the lipid bilayer of appropriate donor membranes into buds and vesicles. COP II proteins are required for selective export of newly synthesized proteins from the endoplasmic reticulum (ER). COP I proteins mediate a retrograde transport pathway that selectively recycles proteins from the cis-Golgi complex to the ER. Additionally, COP I coat proteins have complex functions in intra-Golgi trafficking and in maintaining the normal structure of the mammalian interphase Golgi complex.  相似文献   

7.
Rapidly cycling proteins of the early secretory pathway can operate as cargo receptors. Known cargo receptors are abundant proteins, but it remains mysterious why their inactivation leads to rather limited secretion phenotypes. Studies of Surf4, the human orthologue of the yeast cargo receptor Erv29p, now reveal a novel function of cargo receptors. Surf4 was found to interact with endoplasmic reticulum-Golgi intermediate compartment (ERGIC)-53 and p24 proteins. Silencing Surf4 together with ERGIC-53 or silencing the p24 family member p25 induced an identical phenotype characterized by a reduced number of ERGIC clusters and fragmentation of the Golgi apparatus without effect on anterograde transport. Live imaging showed decreased stability of ERGIC clusters after knockdown of p25. Silencing of Surf4/ERGIC-53 or p25 resulted in partial redistribution of coat protein (COP) I but not Golgi matrix proteins to the cytosol and partial resistance of the cis-Golgi to brefeldin A. These findings imply that cargo receptors are essential for maintaining the architecture of ERGIC and Golgi by controlling COP I recruitment.  相似文献   

8.
COP I and COP II coat proteins direct protein and membrane trafficking in between early compartments of the secretory pathway in eukaryotic cells. These coat proteins perform the dual, essential tasks of selecting appropriate cargo proteins and deforming the lipid bilayer of appropriate donor membranes into buds and vesicles. COP II proteins are required for selective export of newly synthesized proteins from the endoplasmic reticulum (ER). COP I proteins mediate a retrograde transport pathway that selectively recycles proteins from the cis-Golgi complex to the ER. Additionally, COP I coat proteins have complex functions in intra-Golgi trafficking and in maintaining the normal structure of the mammalian interphase Golgi complex.  相似文献   

9.
In this issue of JCB, Welch et al. (2021. J. Cell Biol. https://doi.org/10.1083/jcb.202106115) show that GOLPH3 mediates the sorting of numerous Golgi proteins into recycling COPI transport vesicles. This explains how many resident proteins are retained at the Golgi and reveals a key role for GOLPH3 in maintaining Golgi homeostasis.

The Golgi apparatus lies at the heart of the secretory pathway, where its major functions are the posttranslational modification of cargo proteins and lipids, particularly at the level of glycosylation, and the sorting of cargo to its correct onward destination. The Golgi is composed of stacked membrane compartments called cisternae, which contain numerous resident enzymes that act on the cargo as it passes through the organelle, from the entry or cis side to the exit or trans side. Each resident enzyme has its own distribution within the Golgi stack, resulting in the sequential modification of the secretory cargo as it moves through the Golgi.Various mechanisms exist to ensure that Golgi residents are retained within the Golgi despite the huge flux of protein and lipid through this organelle (1). Major players are COPI vesicles, which recycle Golgi residents from later to earlier cisternae, at the same time as the cisternae are thought to slowly migrate across the stack, as on a conveyor belt, progressively changing composition in a process referred to as cisternal maturation (2). Unlike the Golgi resident enzymes, which enter recycling vesicles, cargo is thought to remain within the maturing cisternae as it moves through the Golgi. Certain Golgi enzymes can bind directly to the COPI coat, explaining their inclusion in COPI vesicles (3), but for other enzymes and resident proteins, their retention mechanism is less obvious.Previous studies on the peripheral Golgi membrane protein GOLPH3 and its paralogue GOLPH3L (herein I will refer to both proteins as GOLPH3) indicated it can bind to certain Golgi enzymes and to the COPI coat, thereby acting as an adaptor to mediate sorting of these enzymes into COPI vesicles (4, 5). This was first shown for the yeast orthologue Vps74p (6, 7) and has also been demonstrated for the Drosophila version of the protein (8), consistent with a conserved function in Golgi enzyme retention. However, the extent to which GOLPH3 might participate in retention of different Golgi enzymes and other resident proteins, and its importance relative to other methods of protein retention in the Golgi, has remained unclear. Indeed, a recent study suggested that GOLPH3 selectively mediates the retention of enzymes involved in glycosphingolipid synthesis, consistent with a fairly selective role in retaining only a subset of resident Golgi enzymes (9). It should also be noted that GOLPH3 has been implicated in other functions, namely budding of exocytic vesicles from the Golgi, the DNA damage response, and mechanistic target of rapamycin signaling (10).In their current paper, Welch et al. used a combination of approaches to reassess the role of GOLPH3 at the Golgi (11). Using proteomics, they could identify numerous GOLPH3 binding partners, which included COPI, as expected, and a large number of other Golgi residents, including numerous Golgi enzymes and other membrane proteins. The ability of GOLPH3 to retain enzymes at the Golgi was confirmed using microscopy and an innovative flow cytometry–based assay to quantify surface versus Golgi abundance. The large number of possible interactors suggested that GOLPH3 could mediate the Golgi retention of many proteins. To further assess this possibility, the authors took advantage of previous observations showing that Golgi enzymes may be misrouted to the lysosome and degraded upon their failure to be retained in the Golgi (6, 7, 9). Using mass spectrometry, they could show that numerous Golgi resident proteins were depleted in GOLPH3 knockout cells, many of which were also found in the GOLPH3 interactome. This included many enzymes involved in glycosylation, consistent with GOLPH3 playing an important role in maintaining Golgi-dependent glycosylation of proteins and lipids. This was supported by lectin analysis, which showed marked changes in a broad range of glycans in the GOLPH3 knockout cells.The large number of GOLPH3 clients raises the question as to how it can recognize so many proteins. Previous work has shown binding to the cytoplasmic tails of Golgi enzymes and an interaction motif has been described for Vps74p and more recently for GOLPH3 (6, 9). However, bioinformatics analysis of the many GOLPH3 clients combined with mutational analysis, as performed in the current study, revealed the lack of a consensus sequence for GOLPH3 binding, with the common feature being a strong net positive charge combined with short cytoplasmic tail length. This would result in a high positive charge proximal to the membrane, which likely allows interaction with an acidic patch on the surface of GOLPH3. This mode of binding could mediate selective retention of many Golgi residents, while allowing for the forward trafficking of cargo proteins that have longer, less charged, or folded cytoplasmic domains.GOLPH3 is an oncogene associated with many types of cancer (12). Several mechanisms have been proposed to account for the oncogenic properties of GOLPH3, but most compelling is that changes in glycosylation are responsible. It was recently shown that GOLPH3-dependent changes in glycosphingolipids affects cell growth by altering mitogenic signaling (9). Changes in glycosylation of surface receptors has also been reported, which can affect surface abundance and hence signaling (13). The new results from Welch et al. suggest that glycosylation of many proteins and lipids may be relevant in cancer and that potentially a broad range of downstream targets contribute to oncogenesis. Such targets could influence processes beyond signaling, including cell adhesion and migration, that are known to be sensitive to changes in the surface glycome and which have been reported in previous studies on GOLPH3 (12).The study by Welch et al. indicates a major role for GOLPH3 in Golgi protein retention (Fig. 1). Clearly though, other retention mechanisms exist, including direct binding to COPI, and transmembrane domain length is also important, where the short transmembrane domain of resident proteins favors partitioning into recycling COPI vesicles and Golgi cisternal membranes of a similar thickness (1). Additional COPI adaptors are also likely, with TM9SF2 recently identified as a likely candidate, being present in Golgi vesicles and able to bind certain Golgi enzymes (1). It is possible that different resident proteins use different adaptors, or that a combination of retention mechanisms act in conjunction for certain residents, providing robustness to the retention process. However, any redundancy would seem incomplete given the strong phenotype seen upon loss of GOLPH3. GOLPH3 is localized toward the trans side of the Golgi, so it is possible that other adaptors, such as TM9SF2 and possibly others, might act earlier in the Golgi, or that direct coat binding is more important within the early Golgi. Hence different residents may be more likely to use different retention mechanisms depending on their location in the Golgi. Because GOLPH3 acts late in the Golgi and can bind many clients, we may think of it as a gatekeeper to prevent loss of numerous Golgi residents from the organelle.Open in a separate windowFigure 1.GOLPH3 plays a major role in Golgi protein retention. Golgi resident proteins, including many glycosylation enzymes, depicted by lollipops, are sorted into recycling COPI vesicles to maintain retention in the Golgi in the face of onward cisternal maturation and secretory cargo transport. Different enzymes are depicted by different lollipop shapes and colors, with GOLPH3 clients indicated by horizontal ovals. Enzymes retained by other mechanisms are depicted by lollipops with circles (transmembrane domain length), squares or vertical ovals (binding to other COPI adaptors, indicated in turquoise and purple), or hexagons (direct binding to the COPI coat). GOLPH3, which is more abundant toward the trans side of the Golgi, has many clients.With regard to possible future studies, although we have a good idea of how GOLPH3 recognizes its clients, detailed structural analysis will prove informative in elucidating how it can bind so many proteins. Similarly, identification of additional adaptors linking Golgi residents to the COPI coat will be important to generate a more comprehensive view of Golgi protein retention. Finally, in the context of disease, further analysis of the glycoproteins and glycolipids whose levels are altered because of changes in GOLPH3 expression, of which there are likely to be many, should provide significant new insights into the mechanisms underlying GOLPH3-mediated tumorigenesis.  相似文献   

10.
Secretory proteins exit the ER in transport vesicles that fuse to form vesicular tubular clusters (VTCs) which move along microtubule tracks to the Golgi apparatus. Using the well-characterized in vitro approach to study the properties of Golgi membranes, we determined whether the Golgi enzyme NAGT I is transported to ER/Golgi intermediates. Secretory cargo was arrested at distinct steps of the secretory pathway of a glycosylation mutant cell line, and in vitro complementation of the glycosylation defect was determined. Complementation yield increased after ER exit of secretory cargo and was optimal when transport was blocked at an ER/Golgi intermediate step. The rapid drop of the complementation yield as secretory cargo progresses into the stack suggests that Golgi enzymes are preferentially targeted to ER/Golgi intermediates and not to membranes of the Golgi stack. Two mechanisms for in vitro complementation could be distinguished due to their different sensitivities to brefeldin A (BFA). Transport occurred either by direct fusion of preexisting transport intermediates with ER/Golgi intermediates, or it occurred as a BFA-sensitive and most likely COP I-mediated step. Direct fusion of ER/Golgi intermediates with cisternal membranes of the Golgi stack was not observed under these conditions.  相似文献   

11.
Membrane traffic between the endoplasmic reticulum (ER) and the Golgi complex is regulated by two vesicular coat complexes, COPII and COPI. COPII has been implicated in the selective packaging of anterograde cargo into coated transport vesicles budding from the ER [1]. In mammalian cells, these vesicles coalesce to form tubulo-vesicular transport complexes (TCs), which shuttle anterograde cargo from the ER to the Golgi complex [2] [3] [4]. In contrast, COPI-coated vesicles are proposed to mediate recycling of proteins from the Golgi complex to the ER [1] [5] [6] [7]. The binding of COPI to COPII-coated TCs [3] [8] [9], however, has led to the proposal that COPI binds to TCs and specifically packages recycling proteins into retrograde vesicles for return to the ER [3] [9]. To test this hypothesis, we tracked fluorescently tagged COPI and anterograde-transport markers simultaneously in living cells. COPI predominated on TCs shuttling anterograde cargo to the Golgi complex and was rarely observed on structures moving in directions consistent with retrograde transport. Furthermore, a progressive segregation of COPI-rich domains and anterograde-cargo-rich domains was observed in the TCs. This segregation and the directed motility of COPI-containing TCs were inhibited by antibodies that blocked COPI function. These observations, which are consistent with previous biochemical data [2] [9], suggest a role for COPI within TCs en route to the Golgi complex. By sequestering retrograde cargo in the anterograde-directed TCs, COPI couples the sorting of ER recycling proteins [10] to the transport of anterograde cargo.  相似文献   

12.
The Golgi apparatus is the main glycosylation and sorting station along the secretory pathway. Its structure includes the Golgi vesicles, which are depleted of anterograde cargo, and also of at least some Golgi‐resident proteins. The role of Golgi vesicles remains unclear. Here, we show that Golgi vesicles are enriched in the Qb‐SNAREs GS27 (membrin) and GS28 (GOS‐28), and depleted of nucleotide sugar transporters. A block of intra‐Golgi transport leads to accumulation of Golgi vesicles and partitioning of GS27 and GS28 into these vesicles. Conversely, active intra‐Golgi transport induces fusion of these vesicles with the Golgi cisternae, delivering GS27 and GS28 to these cisternae. In an in vitro assay based on a donor compartment that lacks UDP‐galactose translocase (a sugar transporter), the segregation of Golgi vesicles from isolated Golgi membranes inhibits intra‐Golgi transport; re‐addition of isolated Golgi vesicles devoid of UDP‐galactose translocase obtained from normal cells restores intra‐Golgi transport. We conclude that this activity is due to the presence of GS27 and GS28 in the Golgi vesicles, rather than the sugar transporter. Furthermore, there is an inverse correlation between the number of Golgi vesicles and the number of inter‐cisternal connections under different experimental conditions. Finally, a rapid block of the formation of vesicles via COPI through degradation of ϵCOP accelerates the cis‐to‐trans delivery of VSVG. These data suggest that Golgi vesicles, presumably with COPI, serve to inhibit intra‐Golgi transport by the extraction of GS27 and GS28 from the Golgi cisternae, which blocks the formation of inter‐cisternal connections .  相似文献   

13.

Background  

To maintain organelle integrity, resident proteins must segregate from itinerant cargo during secretory transport. However, Golgi resident enzymes must have intimate access to secretory cargo in order to carry out glycosylation reactions. The amount of cargo and associated membrane may be significant compared to the amount of Golgi membrane and resident protein, but upon Golgi exit, cargo and resident are efficiently sorted. How this occurs in live cells is not known.  相似文献   

14.
We present evidence for two subpopulations of coatomer protein I vesicles, both containing high amounts of Golgi resident proteins but only minor amounts of anterograde cargo. Early Golgi proteins p24alpha2, beta1, delta1, and gamma3 are shown to be sorted together into vesicles that are distinct from those containing mannosidase II, a glycosidase of the medial Golgi stack, and GS28, a SNARE protein of the Golgi stack. Sorting into each vesicle population is Arf-1 and GTP hydrolysis dependent and is inhibited by aluminum and beryllium fluoride. Using synthetic peptides, we find that the cytoplasmic domain of p24beta1 can bind Arf GTPase-activating protein (GAP)1 and cause direct inhibition of ArfGAP1-mediated GTP hydrolysis on Arf-1 bound to liposomes and Golgi membranes. We propose a two-stage reaction to explain how GTP hydrolysis constitutes a prerequisite for sorting of resident proteins, yet becomes inhibited in their presence.  相似文献   

15.
Membrane proteins exit the endoplasmic reticulum (ER) in COPII-transport vesicles. ER export is a selective process in which transport signals present in the cytoplasmic tail (CT) of cargo membrane proteins must be recognized by coatomer proteins for incorporation in COPII vesicles. Two classes of ER export signals have been described for type I membrane proteins, the diacidic and the dihydrophobic motifs. Both motifs participate in the Sar1-dependent binding of Sec23p-Sec24p complex to the CTs during early steps of cargo selection. However, information concerning the amino acids in the CTs that interact with Sar1 is lacking. Herein, we describe a third class of ER export motif, [RK](X)[RK], at the CT of Golgi resident glycosyltransferases that is required for these type II membrane proteins to exit the ER. The dibasic motif is located proximal to the transmembrane border, and experiments of cross-linking in microsomal membranes and of binding to immobilized peptides showed that it directly interacts with the COPII component Sar1. Sar1GTP-bound to immobilized peptides binds Sec23p. Collectively, the present data suggest that interaction of the dibasic motif with Sar1 participates in early steps of selection of Golgi resident glycosyltransferases for transport in COPII vesicles.  相似文献   

16.
Tapasin is a subunit of the transporter associated with antigen processing (TAP). It associates with the major histocompatibility complex (MHC) class I. We show that tapasin interacts with beta- and gamma-subunits of COPI coatomer. COPI retrieves membrane proteins from the Golgi network back to the endoplasmic reticulum (ER). The COPI subunit-associated tapasin also interacts with MHC class I molecules suggesting that tapasin acts as the cargo receptor for packing MHC class I molecules as cargo proteins into COPI-coated vesicles. In tapasin mutant cells, neither TAP nor MHC class I are detected in association with the COPI coatomer. Interestingly, tapasin-associated MHC class I molecules are antigenic peptide-receptive and detected in both the ER and the Golgi. Our data suggest that tapasin is required for the COPI vesicle-mediated retrograde transport of immature MHC class I molecules from the Golgi network to the ER.  相似文献   

17.
Here, we report the localization and characterization of BHKp23, a member of the p24 family of transmembrane proteins, in mammalian cells. We find that p23 is a major component of tubulovesicular membranes at the cis side of the Golgi complex (estimated density: 12,500 copies/μm2 membrane surface area, or ≈30% of the total protein). Our data indicate that BHKp23-containing membranes are part of the cis-Golgi network/intermediate compartment . Using the G protein of vesicular stomatitis virus as a transmembrane cargo molecule, we find that p23 membranes are an obligatory station in forward biosynthetic membrane transport, but that p23 itself is absent from transport vesicles that carry the G protein to and beyond the Golgi complex. Our data show that p23 is not present to any significant extent in coat protein (COP) I-coated vesicles generated in vitro and does not colocalize with COP I buds and vesicles. Moreover, we find that p23 cytoplasmic domain is not involved in COP I membrane recruitment. Our data demonstrate that microinjected antibodies against the cytoplasmic tail of p23 inhibit G protein transport from the cis-Golgi network/ intermediate compartment to the cell surface, suggesting that p23 function is required for the transport of transmembrane cargo molecules. These observations together with the fact that p23 is a highly abundant component in the intermediate compartment, lead us to propose that p23 contributes to membrane structure, and that this contribution is necessary for efficient segregation and transport.  相似文献   

18.
Coat protein complex I (COPI) vesicles play a central role in the recycling of proteins in the early secretory pathway and transport of proteins within the Golgi stack. Vesicle formation is initiated by the exchange of GDP for GTP on ARF1 (ADP-ribosylation factor 1), which, in turn, recruits the coat protein coatomer to the membrane for selection of cargo and membrane deformation. ARFGAP1 (ARF1 GTPase-activating protein 1) regulates the dynamic cycling of ARF1 on the membrane that results in both cargo concentration and uncoating for the generation of a fusion-competent vesicle. Two human orthologues of the yeast ARFGAP Glo3p, termed ARFGAP2 and ARFGAP3, have been demonstrated to be present on COPI vesicles generated in vitro in the presence of guanosine 5′-3-O-(thio)triphosphate. Here, we investigate the function of these two proteins in living cells and compare it with that of ARFGAP1. We find that ARFGAP2 and ARFGAP3 follow the dynamic behavior of coatomer upon stimulation of vesicle budding in vivo more closely than does ARFGAP1. Electron microscopy of ARFGAP2 and ARFGAP3 knockdowns indicated Golgi unstacking and cisternal shortening similarly to conditions where vesicle uncoating was blocked. Furthermore, the knockdown of both ARFGAP2 and ARFGAP3 prevents proper assembly of the COPI coat lattice for which ARFGAP1 does not seem to play a major role. This suggests that ARFGAP2 and ARFGAP3 are key components of the COPI coat lattice and are necessary for proper vesicle formation.  相似文献   

19.
The coat protein II (COPII)–coated vesicular system transports newly synthesized secretory and membrane proteins from the endoplasmic reticulum (ER) to the Golgi complex. Recruitment of cargo into COPII vesicles requires an interaction of COPII proteins either with the cargo molecules directly or with cargo receptors for anterograde trafficking. We show that cytosolic phosphatidic acid phospholipase A1 (PAPLA1) interacts with COPII protein family members and is required for the transport of Rh1 (rhodopsin 1), an N-glycosylated G protein–coupled receptor (GPCR), from the ER to the Golgi complex. In papla1 mutants, in the absence of transport to the Golgi, Rh1 is aberrantly glycosylated and is mislocalized. These defects lead to decreased levels of the protein and decreased sensitivity of the photoreceptors to light. Several GPCRs, including other rhodopsins and Bride of sevenless, are similarly affected. Our findings show that a cytosolic protein is necessary for transit of selective transmembrane receptor cargo by the COPII coat for anterograde trafficking.  相似文献   

20.
The endoplasmic reticulum (ER) is the entry site of proteins into the endomembrane system. Proteins exit the ER via coat protein II (COPII) vesicles in a selective manner, mediated either by direct interaction with the COPII coat or aided by cargo receptors. Despite the fundamental role of such receptors in protein sorting, only a few have been identified. To further define the machinery that packages secretory cargo and targets proteins from the ER to Golgi membranes, we used multiple systematic approaches, which revealed 2 uncharacterized proteins that mediate the trafficking and maturation of Pma1, the essential yeast plasma membrane proton ATPase. Ydl121c (Exp1) is an ER protein that binds Pma1, is packaged into COPII vesicles, and whose deletion causes ER retention of Pma1. Ykl077w (Psg1) physically interacts with Exp1 and can be found in the Golgi and coat protein I (COPI) vesicles but does not directly bind Pma1. Loss of Psg1 causes enhanced degradation of Pma1 in the vacuole. Our findings suggest that Exp1 is a Pma1 cargo receptor and that Psg1 aids Pma1 maturation in the Golgi or affects its retrieval. More generally our work shows the utility of high content screens in the identification of novel trafficking components.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号