首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
By exploiting the large body of genome data and the considerable progress in phylogenetic methodology, recent phylogenomic studies have provided new insights into the relationships among major eukaryotic groups. However, confident placement of the eukaryotic root remains a major challenge. This is due to the large evolutionary distance separating eukaryotes from their closest relatives, the Archaea, implying a weak phylogenetic signal and strong long-branch attraction artifacts. Here, we apply a new approach to the rooting of the eukaryotic tree by using a subset of genomic information with more recent evolutionary origin-mitochondrial sequences, whose closest relatives are α-Proteobacteria. For this, we identified and assembled a data set of 42 mitochondrial proteins (mainly encoded by the nuclear genome) and performed Bayesian and maximum likelihood analyses. Taxon sampling includes the recently sequenced Thecamonas trahens, a member of the phylogenetically elusive Apusozoa. This data set confirms the relationships of several eukaryotic supergroups seen before and places the eukaryotic root between the monophyletic "unikonts" and "bikonts." We further show that T. trahens branches sister to Opisthokonta with significant statistical support and question the bikont/excavate affiliation of Malawimonas species. The mitochondrial data set developed here (to be expanded in the future) constitutes a unique alternative means in resolving deep eukaryotic relationships.  相似文献   

2.
Sexual reproduction in eukaryotes is accomplished by meiosis, a complex and specialized process of cell division that results in haploid cells (e.g., gametes). The stereotypical reductive division in meiosis is a major evolutionary innovation in eukaryotic cells, and delineating its history is key to understanding the evolution of sex. Meiosis arose early in eukaryotic evolution, but when and how meiosis arose and whether all eukaryotes have meiosis remain open questions. The known phylogenetic distribution of meiosis comprises plants, animals, fungi, and numerous protists. Diplomonads including Giardia intestinalis (syn. G. lamblia) are not known to have a sexual cycle; these protists may be an early-diverging lineage and could represent a premeiotic stage in eukaryotic evolution. We surveyed the ongoing G. intestinalis genome project data and have identified, verified, and analyzed a core set of putative meiotic genes-including five meiosis-specific genes-that are widely present among sexual eukaryotes. The presence of these genes indicates that: (1) Giardia is capable of meiosis and, thus, sexual reproduction, (2) the evolution of meiosis occurred early in eukaryotic evolution, and (3) the conserved meiotic machinery comprises a large set of genes that encode a variety of component proteins, including those involved in meiotic recombination.  相似文献   

3.
Elongation factor 1 alpha (EF-1 alpha) is a highly conserved ubiquitous protein involved in translation that has been suggested to have desirable properties for phylogenetic inference. To examine the utility of EF-1 alpha as a phylogenetic marker for eukaryotes, we studied three properties of EF-1 alpha trees: congruency with other phyogenetic markers, the impact of species sampling, and the degree of substitutional saturation occurring between taxa. Our analyses indicate that the EF-1 alpha tree is congruent with some other molecular phylogenies in identifying both the deepest branches and some recent relationships in the eukaryotic line of descent. However, the topology of the intermediate portion of the EF-1 alpha tree, occupied by most of the protist lineages, differs for different phylogenetic methods, and bootstrap values for branches are low. Most problematic in this region is the failure of all phylogenetic methods to resolve the monophyly of two higher-order protistan taxa, the Ciliophora and the Alveolata. JACKMONO analyses indicated that the impact of species sampling on bootstrap support for most internal nodes of the eukaryotic EF-1 alpha tree is extreme. Furthermore, a comparison of observed versus inferred numbers of substitutions indicates that multiple overlapping substitutions have occurred, especially on the branch separating the Eukaryota from the Archaebacteria, suggesting that the rooting of the eukaryotic tree on the diplomonad lineage should be treated with caution. Overall, these results suggest that the phylogenies obtained from EF-1 alpha are congruent with other molecular phylogenies in recovering the monophyly of groups such as the Metazoa, Fungi, Magnoliophyta, and Euglenozoa. However, the interrelationships between these and other protist lineages are not well resolved. This lack of resolution may result from the combined effects of poor taxonomic sampling, relatively few informative positions, large numbers of overlapping substitutions that obscure phylogenetic signal, and lineage-specific rate increases in the EF-1 alpha data set. It is also consistent with the nearly simultaneous diversification of major eukaryotic lineages implied by the "big-bang" hypothesis of eukaryote evolution.  相似文献   

4.
Ticks are monophyletic and composed of the hard (Ixodidae) and soft (Argasidae) tick families, as well as the Nuttalliellidae, a family with a single species, Nuttalliella namaqua. Significant biological differences in lifestyle strategies for hard and soft ticks suggest that various blood-feeding adaptations occurred after their divergence. The phylogenetic relationships between the tick families have not yet been resolved due to the lack of molecular data for N. namaqua. This tick possesses a pseudo-scutum and apical gnathostoma as observed for ixodids, has a leathery cuticle similar to argasids and has been considered the evolutionary missing link between the two families. Little knowledge exists with regard to its feeding biology or host preferences. Data on its biology and systematic relationship to the other tick families could therefore be crucial in understanding the evolution of blood-feeding behaviour in ticks. Live specimens were collected and blood meal analysis showed the presence of DNA for girdled lizards from the Cordylid family. Feeding of ticks on lizards showed that engorgement occurred rapidly, similar to argasids, but that blood meal concentration occurs via malpighian excretion of water. Phylogenetic analysis of the 18S nuclear and 16S mitochondrial genes indicate that N. namaqua grouped basal to the main tick families. The data supports the monophyly of all tick families and suggests the evolution of argasid-like blood-feeding behaviour in the ancestral tick lineage. Based on the data and considerations from literature we propose an origin for ticks in the Karoo basin of Gondwanaland during the late Permian. The nuttalliellid family almost became extinct during the End Permian event, leaving N. namaqua as the closest living relative to the ancestral tick lineage and the evolutionary missing link between the tick families.  相似文献   

5.
The phylogenetic relationships of 39 species of Eneopterinae crickets are reconstructed using four molecular markers (16S rRNA, 12S rRNA, cytochrome b, 18S rRNA) and a large morphological data set. Phylogenetic analysis via direct optimisation of DNA sequence data using parsimony as optimality criterion is done for six combinations of weighting parameter sets in a sensitivity analysis. The results are discussed in a twofold purpose: first, in term of significance of the molecular markers for phylogeny reconstruction in Ensifera, as our study represents the first molecular phylogeny performed for this insect suborder at this level of diversity; second, in term of corroboration of a previous phylogeny of Eneopterinae, built on morphological data alone. The four molecular markers all convey phylogenetic signal, although variously distributed on the tree. The monophyly of the subfamily, that of three over five tribes, and of 10 over 13 genera, are recovered. Finally, previous hypotheses on the evolution of acoustic devices and signals in the Eneopterinae clade are briefly tested, and supported, by our new data set.  相似文献   

6.
Phylogenetic relationships within the flowering plant genus Styrax were investigated with DNA sequence data from the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (nrDNA) and with chloroplast DNA restriction site data from the genes trnK, rpoC1, and rpoC2. The data sets from each genome were analyzed separately and in combination with parsimony methods. The results strongly support the monophyly of each of the four series of the genus but provide little phylogenetic resolution among them. Reticulate evolution may at least partly explain discordance between the molecular phylogenetic estimates and a prior morphological estimate within series Cyrta. The historical biogeography of the genus was inferred with unweighted parsimony character optimization of trees recovered from a combined ITS and morphological data set, after a series of combinability tests for data set congruence was conducted. The results are consistent with the fossil record in supporting a Eurasian origin of Styrax. The nested phylogenetic position of the South American members of the genus within those from southern North America and Eurasia suggests that the boreotropics hypothesis best explains the amphi-Pacific tropical disjunct distribution occurring within section Valvatae. The pattern of relationship recovered among the species of section Styrax ((western North America + western Eurasia) (eastern North America + eastern Eurasia)) is rare among north-temperate Tertiary forest relicts. The monophyly of the group of species from western North America and western Eurasia provides qualified support for the Madrean-Tethyan hypothesis, which posits a Tertiary floristic connection among the semiarid regions in which these taxa occur. A single vicariance event between eastern Asia and eastern North America accounts for the pattern of relationship among intercontinental disjuncts in series Cyrta.  相似文献   

7.
Reconstructing a global phylogeny of eukaryotes is an ongoing challenge of molecular phylogenetics. The availability of genomic data from a broad range of eukaryotic phyla helped in resolving the eukaryotic tree into a topology with a rather small number of large assemblages, but the relationships between these "supergroups" are yet to be confirmed. Rhizaria is the most recently recognized "supergroup," but, in spite of this important position within the tree of life, their representatives are still missing in global phylogenies of eukaryotes. Here, we report the first large-scale analysis of eukaryote phylogeny including data for 2 rhizarian species, the foraminiferan Reticulomyxa filosa and the chlorarachniophyte Bigelowiella natans. Our results confirm the monophyly of Rhizaria (Foraminifera + Cercozoa), with very high bootstrap supports in all analyses. The overall topology of our trees is in agreement with the current view of eukaryote phylogeny with basal division into "unikonts" (Opisthokonts and Ameobozoa) and "bikonts" (Plantae, alveolates, stramenopiles, and excavates). As expected, Rhizaria branch among bikonts; however, their phylogenetic position is uncertain. Depending on the data set and the type of analysis, Rhizaria branch as sister group to either stramenopiles or excavates. Overall, the relationships between the major groups of unicellular bikonts are poorly resolved, despite the use of 85 proteins and the largest taxonomic sampling for this part of the tree available to date. This may be due to an acceleration of evolutionary rates in some bikont phyla or be related to their rapid diversification in the early evolution of eukaryotes.  相似文献   

8.
Recent multi-gene phylogenetic analyses of plastid-encoded genes have recovered a robust monophyly of chlorophyll-c containing plastids (Chl-c palstids) in cryptophytes, haptophytes, photosynthetic stramenopiles, and dinoflagellates. However, all the plastid multi-gene phylogenies published to date utilized the "linked" model, which ignores the heterogeneity of sequence evolution across genes in alignments. Both empirical and simulation studies show that, compared to the linked model, the "unlinked" model, which accounts for gene-specific evolution, can greatly improve multi-gene estimations. Here we newly sequenced 46 genes of Chl-c plastids, and examined the Chl-c plastid evolution by multi-gene analyses under the unlinked model. Unexpectedly, Chl-c plastid monophyly received only low to medium support in our analyses based on multi-gene data sets including up to 4829 alignment positions. Although we systematically surveyed and excluded the genes that could mislead estimation, the (inconclusive) support for Chl-c plastid monophyly was not significantly altered. We conclude that the estimates from the current plastid-encoded gene data are insufficient to resolve Chl-c plastid evolution with confidence, and are highly affected by genes subjected to the analyses, and methods for tree reconstruction applied. Thus, future data analyses of larger multi-gene data sets, preferentially under the unlinked model, are required to conclusively understand Chl-c plastid evolution.  相似文献   

9.
Reconstructing the ancestral characteristics of species is a major goal in evolutionary and comparative biology. Unfortunately, fossils are not always available and sufficiently informative, and phylogenetic methods based on models of character evolution can be unsatisfactory. Genomic data offer a new opportunity to estimate ancestral character states, through (i) the correlation between DNA evolutionary processes and species life‐history traits and (ii) available reliable methods for ancestral sequence inference. Here, we assess the relevance of mitochondrial DNA – the most popular molecular marker in animals – as a predictor of ancestral life‐history traits in mammals, using the order of Cetartiodactyla as a benchmark. Using the complete set of 13 mitochondrial protein‐coding genes, we show that the lineage‐specific nonsynonymous over synonymous substitution rate ratio (dN/dS) is closely correlated with the species body mass, longevity and age of sexual maturity in Cetartiodactyla and can be used as a marker of ancestral traits provided that the noise introduced by short branches is appropriately dealt with. Based on ancestral dN/dS estimates, we predict that the first cetartiodactyls were relatively small animals (around 20 kg). This finding is in accordance with Cope's rule and the fossil record but could not be recovered via continuous character evolution methods.  相似文献   

10.
The complete nucleotide sequence of the mitochondrial (mt) genome was determined for three species of discoglossid frogs (Amphibia:Anura:Discoglossidae), representing three of the four recognized genera: Alytes obstetricans, Bombina orientalis, and Discoglossus galganoi. The organization and size of these newly determined mt genomes are similar to those previously reported for other vertebrates. Phylogenetic analyses (maximum likelihood, Bayesian inference, minimum evolution, and maximum parsimony) of mt protein-coding genes at the amino acid level were performed in combination with already published mt genome sequence data of three species of Neobatrachia, one of Pipoidea, and four of Caudata. Phylogenetic analyses based on the deduced amino acid sequences of all mt protein-coding genes arrived at the same topology. The monophyly of Discoglossidae is strongly supported. Within the Discoglossidae, Alytes is consistently recovered as sister group of Discoglossus, to the exclusion of Bombina. The three species representing Neobatrachia exhibited extremely long branches irrespective of the phylogenetic inference method used, and hence their relative position with respect to Discoglossidae and Xenopus may be artefactual due to a severe long branch attraction effect. To further investigate the phylogenetic intrarelationships of discoglossids, nucleotide sequences of four nuclear protein-coding genes (CXCR4, RAG1, RAG2, and Rhodopsin) with sequences available for the three discoglossid genera and Xenopus were retrieved from GenBank, and together with a concatenated nucleotide sequence data set containing all mt protein-coding genes except ND6 were subjected to separate and combined phylogenetic analyses. In all cases, a sister group relationship between Alytes and Discoglossus was recovered with high statistical support.  相似文献   

11.
In the context of exponential growing molecular databases, it becomes increasingly easy to assemble large multigene data sets for phylogenomic studies. The expected increase of resolution due to the reduction of the sampling (stochastic) error is becoming a reality. However, the impact of systematic biases will also become more apparent or even dominant. We have chosen to study the case of the long-branch attraction artefact (LBA) using real instead of simulated sequences. Two fast-evolving eukaryotic lineages, whose evolutionary positions are well established, microsporidia and the nucleomorph of cryptophytes, were chosen as model species. A large data set was assembled (44 species, 133 genes, and 24,294 amino acid positions) and the resulting rooted eukaryotic phylogeny (using a distant archaeal outgroup) is positively misled by an LBA artefact despite the use of a maximum likelihood-based tree reconstruction method with a complex model of sequence evolution. When the fastest evolving proteins from the fast lineages are progressively removed (up to 90%), the bootstrap support for the apparently artefactual basal placement decreases to virtually 0%, and conversely only the expected placement, among all the possible locations of the fast-evolving species, receives increasing support that eventually converges to 100%. The percentage of removal of the fastest evolving proteins constitutes a reliable estimate of the sensitivity of phylogenetic inference to LBA. This protocol confirms that both a rich species sampling (especially the presence of a species that is closely related to the fast-evolving lineage) and a probabilistic method with a complex model are important to overcome the LBA artefact. Finally, we observed that phylogenetic inference methods perform strikingly better with simulated as opposed to real data, and suggest that testing the reliability of phylogenetic inference methods with simulated data leads to overconfidence in their performance. Although phylogenomic studies can be affected by systematic biases, the possibility of discarding a large amount of data containing most of the nonphylogenetic signal allows recovering a phylogeny that is less affected by systematic biases, while maintaining a high statistical support.  相似文献   

12.
The phylogenetic position of cyclostomes, i.e., the relationships between hagfishes, lampreys, and jawed vertebrates is an unresolved problem. Anatomical data support the paraphyly of cyclostomes, whereas nuclear genes data support monophyly of cyclostomes. Previous results obtained using mitochondrial DNA are ambiguous, presumably due to a lack of informative sequences. By adding the complete mtDNA of a hagfish, Eptatretus burgeri, we have generated a novel data set for sequences of hagfishes and of lampreys. The addition of this mtDNA sequence to the 12 taxa we have already used becomes sufficient to obtain unambiguous results. This data set, which includes sequences of mtDNA of animals closely related to the lamprey/hagfish node, was used in a phylogenetic analysis with two independent statistical approaches and unequivocally supported the monophyly of cyclostomes. Thus molecular data, i.e., our results and those obtained using nuclear genes, conclude that hagfishes and lampreys form a clade.  相似文献   

13.
Within the Polyceridae, Nembrothinae includes some of the most striking and conspicuous sea slugs known, although several features of their biology and phylogenetic relationships remain unknown. This paper reports a phylogenetic analysis based on partial sequences of two mitochondrial genes (cytochrome c oxidase subunit I and 16S rRNA) and morphology for most species included in Nembrothinae. Our phylogenetic reconstructions using both molecular and combined morphological and molecular data support the taxonomic splitting of Nembrothinae into several taxa. Excluding one species (Tambja tentaculata), the monophyly of Roboastra was supported by all the phylogenetic analyses of the combined molecular data. Nembrotha was monophyletic both in the morphological and molecular analyses, always with high support. However, Tambja was recovered as para- or polyphyletic, depending on the analysis performed. Our study also rejects the monophyly of "phanerobranch" dorids based on molecular data.  相似文献   

14.
ABSTRACT: BACKGROUND: Horizontal gene transfer (HGT) is traditionally considered to be rare in multicellular eukaryotes such as animals. Recently, many genes of miscellaneous algal origins were discovered in choanoflagellates. Considering that choanoflagellates are the existing closest relatives of animals, we speculated that ancient HGT might have occurred in the unicellular ancestor of animals and affected the long-term evolution of animals. RESULTS: Through genome screening, phylogenetic and domain analyses, we identified 14 gene families, including 92 genes, in the tunicate Ciona intestinalis that are likely derived from miscellaneous photosynthetic eukaryotes. Almost all of these gene families are distributed in diverse animals, suggesting that they were mostly acquired by the common ancestor of animals. Their miscellaneous origins also suggest that these genes are not derived from a particular algal endosymbiont. In addition, most genes identified in our analyses are functionally related to molecule transport, cellular regulation and methylation signaling, suggesting that the acquisition of these genes might have facilitated the intercellular communication in the ancestral animal. CONCLUSIONS: Our findings provide additional evidence that algal genes in aplastidic eukaryotes are not exclusively derived from historical plastids and thus important for interpreting the evolution of eukaryotic photosynthesis. Most importantly, our data represent the first evidence that more anciently acquired genes might exist in animals and that ancient HGT events have played an important role in animal evolution.  相似文献   

15.
We sequenced small-subunit ribosomal RNA genes (16S-like rDNAs) of 10 species belonging to the genera Entamoeba and Endolimax. This study was undertaken to (1) resolve the relationships among the major lineages of Entamoeba previously identified by riboprinting; (2) examine the validity of grouping the genera Entamoeba and Endolimax in the same family, the Entamoebidae; and (3) examine how different models of nucleotide evolution influence the position of Entamoeba in eukaryotic phylogenetic reconstructions. The results obtained with distance, parsimony, and maximum-likelihood analyses support monophyly of the genus Entamoeba and are largely in accord with riboprinting results. Species of Entamoeba producing cysts with the same number of nuclei from monophyletic groups. The most basal Entamoeba species are those that produce cysts with eight nuclei, while the group producing four-nucleated cysts is most derived. Most phylogenetic reconstructions support monophyly of the Entamoebidae. In maximum-likelihood and parsimony analyses, Endolimax is a sister taxon to Entamoeba, while in some distance analyses, it represents a separate lineage. The secondary loss of mitochondria and other organelles from these genera is confirmed by their relatively late divergence in eukaryotic 16S-like rDNA phylogenies. Finally, we show that the positions of some (fast-evolving) eukaryotic lineages are uncertain in trees constructed with models that make corrections for among-site rate variation.  相似文献   

16.
Higher-level relationships within, and the root of Placentalia, remain contentious issues. Resolution of the placental tree is important to the choice of mammalian genome projects and model organisms, as well as for understanding the biogeography of the eutherian radiation. We present phylogenetic analyses of 63 species representing all extant eutherian mammal orders for a new molecular phylogenetic marker, a 1.3kb portion of exon 26 of the apolipoprotein B (APOB) gene. In addition, we analyzed a multigene concatenation that included APOB sequences and a previously published data set (Murphy et al., 2001b) of three mitochondrial and 19 nuclear genes, resulting in an alignment of over 17kb for 42 placentals and two marsupials. Due to computational difficulties, previous maximum likelihood analyses of large, multigene concatenations for placental mammals have used quartet puzzling, less complex models of sequence evolution, or phylogenetic constraints to approximate a full maximum likelihood bootstrap. Here, we utilize a Unix load sharing facility to perform maximum likelihood bootstrap analyses for both the APOB and concatenated data sets with a GTR+Gamma+I model of sequence evolution, tree-bisection and reconnection branch-swapping, and no phylogenetic constraints. Maximum likelihood and Bayesian analyses of both data sets provide support for the superordinal clades Boreoeutheria, Euarchontoglires, Laurasiatheria, Xenarthra, Afrotheria, and Ostentoria (pangolins+carnivores), as well as for the monophyly of the orders Eulipotyphla, Primates, and Rodentia, all of which have recently been questioned. Both data sets recovered an association of Hippopotamidae and Cetacea within Cetartiodactyla, as well as hedgehog and shrew within Eulipotyphla. APOB showed strong support for an association of tarsier and Anthropoidea within Primates. Parsimony, maximum likelihood and Bayesian analyses with both data sets placed Afrotheria at the base of the placental radiation. Statistical tests that employed APOB to examine a priori hypotheses for the root of the placental tree rejected rooting on myomorphs and hedgehog, but did not discriminate between rooting at the base of Afrotheria, at the base of Xenarthra, or between Atlantogenata (Xenarthra+Afrotheria) and Boreoeutheria. An orthologous deletion of 363bp in the aligned APOB sequences proved phylogenetically informative for the grouping of the order Carnivora with the order Pholidota into the superordinal clade Ostentoria. A smaller deletion of 237-246bp was diagnostic of the superordinal clade Afrotheria.  相似文献   

17.
Horseshoe crabs (order Xiphosura) are often referred to as an ancient order of marine chelicerates and have been considered as keystone taxa for the understanding of chelicerate evolution. However, the mitochondrial genome of this order is only available from a single species, Limulus polyphemus. In the present study, we analyzed the complete mitochondrial genomes from two Asian horseshoe crabs, Carcinoscorpius rotundicauda and Tachypleus tridentatus to offer novel data for the evolutionary relationship within Xiphosura and their position in the chelicerate phylogeny. The mitochondrial genomes of C. rotundicauda (15,033 bp) and T. tridentatus (15,006 bp) encode 13 protein-coding genes, two ribosomal RNA (rRNA) genes, and 22 transfer RNA (tRNA) genes. Overall sequences and genome structure of two Asian species were highly similar to that of Limulus polyphemus, though clear differences among three were found in the stem-loop structure of the putative control region. In the phylogenetic analysis with complete mitochondrial genomes of 43 chelicerate species, C. rotundicauda and T. tridentatus were recovered as a monophyly, while L. polyphemus solely formed an independent clade. Xiphosuran species were placed at the basal root of the tree, and major other chelicerate taxa were clustered in a single monophyly, clearly confirming that horseshoe crabs composed an ancestral taxon among chelicerates. By contrast, the phylogenetic tree without the information of Asian horseshoe crabs did not support monophyletic clustering of other chelicerates. In conclusion, our analyses may provide more robust and reliable perspective on the study of evolutionary history for chelicerates than earlier analyses with a single Atlantic species.  相似文献   

18.
Recent multigene phylogenetic analyses have contributed much to our understanding of eukaryotic phylogeny. However, the phylogenetic positions of various lineages within the eukaryotes have remained unresolved or in conflict between different phylogenetic studies. These phylogenetic ambiguities might have resulted from mixtures or integration from various factors including limited taxon sampling, missing data in the alignment, saturations of rapidly evolving genes, mixed analyses of short- and long-branched operational taxonomic units (OTUs), intracellular endoparasite and ciliate OTUs with unusual substitution etc. In order to evaluate the effects from intracellular endoparasite and ciliate OTUs co-analyzed on the eukaryotic phylogeny and simplify the results, we here used two different sets of data matrices of multiple slowly evolving genes with small amounts of missing data and examined the phylogenetic position of the secondary photosynthetic chromalveolates Haptophyta, one of the most abundant groups of oceanic phytoplankton and significant primary producers. In both sets, a robust sister relationship between Haptophyta and SAR (stramenopiles, alveolates, rhizarians, or SA [stramenopiles and alveolates]) was resolved when intracellular endoparasite/ciliate OTUs were excluded, but not in their presence. Based on comparisons of character optimizations on a fixed tree (with a clade composed of haptophytes and SAR or SA), disruption of the monophyly between haptophytes and SAR (or SA) in the presence of intracellular endoparasite/ciliate OTUs can be considered to be a result of multiple evolutionary reversals of character positions that supported the synapomorphy of the haptophyte and SAR (or SA) clade in the absence of intracellular endoparasite/ciliate OTUs.  相似文献   

19.
Nucleotide sequences of the mitochondrial protein coding cytochrome b (cyt b; 650 bp) and small-subunit 12S ribosomal RNA (approximately 350 bp) genes were used in analyses of phylogenetic relationships among extant phrynosomatid sand lizards, including an examination of competing hypotheses regarding the evolution of "earlessness." Sequences were obtained from all currently recognized species of sand lizards as well as representatives of the first and second outgroups and analyzed using both parsimony and likelihood methods. The cyt b data offer strong support for relationships that correspond with relatively recent divergences and moderate to low support for relationships reflecting more ancient divergences within the clade. These data support monophyly of the "earless" taxa, the placement of Uma as the sister taxon to the other sand lizards, and monophyly of all four taxa traditionally ranked as genera. All well-supported relationships in the 12S phylogeny are completely congruent with well-supported relationships in the cyt b phylogeny; however, the 12S data alone provide very little support for deeper divergences. Phylogenetic relationships within species are concordant with geography and suggest patterns of phylogeographic differentiation, including the conclusion that at least one currently recognized species (Holbrookia maculata) actually consists of more than one species. By independently optimizing likelihood model parameters for various subsets of the data, we found that nucleotide substitution processes vary widely between genes and among the structural and functional regions or classes of sites within each gene. Therefore, we compared competing phylogenetic hypotheses, using parameter estimates specific to those subsets, analyzing the subsets separately and in various combinations. The hypothesis supported by the cyt b data was favored over rival hypotheses in all but one of the five comparisons made with the entire data set, including the set of partitions that best explained the data, although we were unable to confidently reject (P < 0.05) alternative hypotheses. Our results highlight the importance of optimizing models and parameter estimates for different genes or parts thereof--a strategy that takes advantages of the strengths of both combining and partitioning data.  相似文献   

20.
The complete nucleotide sequence (14,472 bp) of the mitochondrial genome of the nudibranch Roboastra europaea (Gastropoda: Opisthobranchia) was determined. This highly compact mitochondrial genome is nearly identical in gene organization to that found in opisthobranchs and pulmonates (Euthyneura) but not to that in prosobranchs (a paraphyletic group including the most basal lineages of gastropods). The newly determined mitochondrial genome differs only in the relative position of the trnC gene when compared with the mitochondrial genome of Pupa strigosa, the only opisthobranch mitochondrial genome sequenced so far. Pupa and Roboastra represent the most basal and derived lineages of opisthobranchs, respectively, and their mitochondrial genomes are more similar in sequence when compared with those of pulmonates. All phylogenetic analyses (maximum parsimony, minimum evolution, maximum likelihood, and Bayesian) based on the deduced amino acid sequences of all mitochondrial protein-coding genes supported the monophyly of opisthobranchs. These results are in agreement with the classical view that recognizes Opisthobranchia as a natural group and contradict recent phylogenetic studies of the group based on shorter sequence data sets. The monophyly of opisthobranchs was further confirmed when a fragment of 2,500 nucleotides including the mitochondrial cox1, rrnL, nad6, and nad5 genes was analyzed in several species representing five different orders of opisthobranchs with all common methods of phylogenetic inference. Within opisthobranchs, the polyphyly of cephalaspideans and the monophyly of nudibranchs were recovered. The evolution of mitochondrial tRNA rearrangements was analyzed using the cox1+rrnL+nad6+nad5 gene phylogeny. The relative position of the trnP gene between the trnA and nad6 genes was found to be a synapomorphy of opisthobranchs that supports their monophyly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号