首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R E Klevit  E B Waygood 《Biochemistry》1986,25(23):7774-7781
Sequence-specific resonance assignments of the 1H NMR spectrum of the 85-residue histidine-containing phosphocarrier protein (HPr) are complete [Klevit, R. E., Drobny, G. P., & Waygood, E. B. (1986) Biochemistry (first paper of three in this issue)]. Additional side-chain assignments have been made with long-range coherence transfer experiments [Klevit, R. E., & Drobny, G. P. (1986) Biochemistry (second paper of three in this issue)]. In this paper, the NMR assignments were used to determine the secondary structure and the tertiary folding of HPr in solution. The secondary structural elements of the protein were determined by visual inspection of the pattern of nearest-neighbor nuclear Overhauser effects (NOEs) and the presence of persistent amide resonances. Escherichia coli HPr consists of four beta-strands, three alpha-helices, four reverse turns, and several regions of extended backbone structure. Long-range NOEs, especially among side-chain protons, were used to determine the tertiary structure of the protein by use of the secondary structural components. The four beta-strands form a single antiparallel beta-pleated sheet. The hydrophobic faces of the alpha-helices interact to form a hydrophobic core and sit above the hydrophobic face of the beta-sheet, forming an open-face beta-sheet sandwich structure. The active site histidine, His-15, is on a short kinked segment of backbone that is accessible to the solvent. The positively charged phosphorylation site (His-15 and Arg-17) interacts with the negatively charged carboxyl terminus of the protein (Glu-85).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The assignment of backbone resonances and the secondary structure determination of the Cys 10 Ser mutant of enzyme IIBcellobiose of the Escherichia coli cellobiose-specific phosphoenol-pyruvate-dependent phosphotransferase system are presented. The backbone resonances were assigned using 4 triple resonance experiments, the HNCA and HN(CO)CA experiments, correlating backbone 1H, 15N, and 13C alpha resonances, and the HN(CA)CO and HNCO experiments, correlating backbone 1H,15N and 13CO resonances. Heteronuclear 1H-NOE 1H-15N single quantum coherence (15N-NOESY-HSQC) spectroscopy and heteronuclear 1H total correlation 1H-15N single quantum coherence (15N-TOCSY-HSQC) spectroscopy were used to resolve ambiguities arising from overlapping 13C alpha and 13CO frequencies and to check the assignments from the triple resonance experiments. This procedure, together with a 3-dimensional 1H alpha-13C alpha-13CO experiment (COCAH), yielded the assignment for all observed backbone resonances. The secondary structure was determined using information both from the deviation of observed 1H alpha and 13C alpha chemical shifts from their random coil values and 1H-NOE information from the 15N-NOESY-HSQC. These data show that enzyme IIBcellobiose consists of a 4-stranded parallel beta-sheet and 5 alpha-helices. In the wild-type enzyme IIBcellobiose, the catalytic residue appears to be located at the end of a beta-strand.  相似文献   

3.
4.
An 80 amino acid polypeptide corresponding to the DNA-binding domain (DBD) of the human retinoic acid receptor beta (hRAR-beta) has been studied by 1H homonuclear and 15N-1H heteronuclear two- and three-dimensional (2D and 3D) NMR spectroscopy. The polypeptide has two putative zinc fingers homologous to those of the receptors for steroid and thyroid hormones and vitamin D3. The backbone 1H resonances as well as over 90% of the side-chain 1H resonances have been assigned by 1H homonuclear 2D techniques except for the three N-terminal residues. The assignments have been confirmed further by means of 15N-1H heteronuclear 3D techniques, which also yielded the assignments of the 15N resonances. Additionally, stereospecific assignments of methyl groups of five valine residues were made. Sequential and medium-range NOE connectivities indicate several elements of secondary structure including two alpha-helices consisting of residues E26-Q37 and Q61-E70, a short antiparallel beta-sheet consisting of residues P7-F9 and S23-C25, four turns consisting of residues P7-V10, I36-N39, D47-C50, and F69-G72, and several regions of extended peptide conformation. Similarly, two helices are found in the glucocorticoid receptor (GR) DBD in solution [H?rd et al. (1990) Science 249, 157-160] and in crystal [Luisi et al. (1991) Nature 352, 497-505], and in the estrogen receptor (ER) DBD in solution [Schwabe et al. (1990) Nature 348, 458-461], although the exact positions and sizes of the helices differ somewhat. Furthermore, long-range NOEs suggest the existence of a hydrophobic core formed by the two helices.  相似文献   

5.
Plastocyanin is a predominantly beta-sheet protein containing a type I copper center. The conformational ensemble of a denatured state of apo-plastocyanin formed in solution under conditions of low salt and neutral pH has been investigated by multidimensional heteronuclear NMR spectroscopy. Chemical shift assignments were obtained by using three-dimensional triple-resonance NMR experiments to trace through-bond heteronuclear connectivities along the backbone and side chains. The (3)J(HN,Halpha) coupling constants, (15)N-edited proton-proton nuclear Overhauser effects (NOEs), and (15)N relaxation parameters were also measured for the purpose of structural and dynamic characterization. Most of the residues corresponding to beta-strands in the folded protein exhibit small upfield shifts of the (13)C(alpha) and (13)CO resonances relative to random coil values, suggesting a slight preference for backbone dihedral angles in the beta region of (phi,psi) space. This is further supported by the presence of strong sequential d(alphaN)(i, i + 1) NOEs throughout the sequence. The few d(NN)(i, i + 1) proton NOEs that are observed are mostly in regions that form loops in the native plastocyanin structure. No medium or long-range NOEs were observed. A short sequence, between residues 59 and 63, was found to populate a nonnative helical conformation in the unfolded state, as indicated by the shift of the (13)C(alpha), (13)CO, and (1)H(alpha) resonances relative to random coil values and by the decreased values of the (3)J(HN,Halpha) coupling constants. The (15)N relaxation parameters indicate restriction of motions on a nanosecond timescale in this region. Intriguingly, this helical conformation is present in a sequence that is close to but not in the same location as the single short helix in the native folded protein. The results are consistent with earlier NMR studies of peptide fragments of plastocyanin and confirm that the regions of the sequence that form beta-strands in the native protein spontaneously populate the beta-region of (phi,psi) space under folding conditions, even in the absence of stabilizing tertiary interactions. We conclude that the state of apo-plastocyanin present under nondenaturing conditions is a noncompact unfolded state with some evidence of nativelike and nonnative local structuring that may be initiation sites for folding of the protein.  相似文献   

6.
Human macrophage migration inhibitory factor is a 114 amino acid protein that belongs to the family of immunologic cytokines. Assignments of 1H, 15N, and 13C resonances have enabled the determination of the secondary structure of the protein, which consists of two alpha-helices (residues 18-31 and 89-72) and a central four-stranded beta-sheet. In the beta-sheet, two parallel beta-sheets are connected in an antiparallel sense. From the total of three cysteines present in the primary structure of MIF, none was found to form disulfide bridges. 1H-15N heteronuclear T1, T2, and steady-state NOE measurements indicate that the backbone of MIF exists in a rigid structure of limited conformational flexibility (on the nanosecond to picosecond time scale). Several residues located in the loop regions and at the N termini of two helices exhibit internal motions on the 1-3 ns time scale. The capacity to bind glutathione was investigated by titration of a uniform 15N-labeled sample and led us to conclude that MIF has, at best, very low affinity for glutathione.  相似文献   

7.
Essentially complete (96%) sequence-specific assignments were made for the backbone and side-chain 1H, 13C, and 15N resonances of Fusarium solani pisi cutinase, produced as a 214-residue heterologous protein in Escherichia coli, using heteronuclear NMR techniques. Three structural features were noticed during the assignment. (1) The secondary structure in solution corresponds mostly with the structure from X-ray diffraction, suggesting that both structures are globally similar. (2) The HN of Ala32 has a strongly upfield-shifted resonance at 3.97 ppm, indicative of an amide-aromatic hydrogen bond to the indole ring of Trp69 that stabilizes the N-terminal side of the parallel beta-sheet. (3) The NMR data suggest that the residues constituting the oxyanion hole are quite mobile in the free enzyme in solution, in contrast to the existence of a preformed oxyanion hole as observed in the crystal structure. Apparently, cutinase forms its oxyanion hole upon binding of the substrate like true lipases.  相似文献   

8.
The hnRNP C1 and C2 proteins are abundant nuclear proteins that bind avidly to heterogeneous nuclear RNAs (hnRNAs) and appear to be involved with pre-mRNA processing. The RNA-binding activity of the hnRNP C proteins is contained in the amino-terminal 94 amino acid RNA-binding domain (RBD) that is identical for these two proteins. We have obtained the 1H, 13C, and 15N NMR assignments for the RBD of the human hnRNP C proteins. The assignment process was facilitated by extensive utilization of three- and four-dimensional heteronuclear-edited spectra. Sequential assignments of the backbone resonances were made using a combination of 15N-edited 3D NOESY-HMQC, 3D TOCSY-HMQC, and 3D TOCSY-NOESY-HSQC as well as 3D HNCA, HNCO, and HCACO spectra. Side-chain resonances were assigned using 3D HCCH-COSY and 3D HCH-TOCSY spectra. Four-dimensional 13C/13C-edited NOESY and 13C/15N-edited NOESY experiments were used to unambigously resolve NOEs. The overall global folding pattern was established by calculating a set of preliminary structures using constraints derived from the sequential NOEs and a small number of long-range NOEs. The beta alpha beta-beta alpha beta domain structure exhibits an antiparallel beta-sheet with the conserved RNP 1 and RNP 2 sequences [Dreyfuss et al. (1988) Trends Biochem. Sci. 13, 86-91] located adjacent to one another as the two inner strands of the beta-sheet.  相似文献   

9.
The DNA polymerase III holoenzyme (HE) is the primary replicative polymerase of Escherichia coli. The epsilon subunit of the HE complex provides the 3'-exonucleolytic proofreading activity for this enzyme complex. epsilon consists of two domains: an N-terminal domain containing the proofreading exonuclease activity (residues 1-186) and a C-terminal domain required for binding to the polymerase (alpha) subunit (residues 187-243). Multidimensional NMR studies of (2)H-, (13)C-, and (15)N-labeled N-terminal domains (epsilon186) were performed to assign the backbone resonances and measure H(N)-H(N) nuclear Overhauser effects (NOEs). NMR studies were also performed on triple-lableled [U-(2)H,(13)C,(15)N]epsilon186 containing Val, Leu, and Ile residues with protonated methyl groups, which allowed for the assignment of H(N)-CH(3) and CH(3)-CH(3) NOEs. Analysis of the (13)C(alpha), (13)C(beta), and (13)CO shifts, using chemical shift indexing and the TALOS program, allowed for the identification of regions of the secondary structure. H(N)-H(N) NOEs provided information on the assembly of the extended strands into a beta-sheet structure and confirmed the assignment of the alpha helices. Measurement of H(N)-CH(3) and CH(3)-CH(3) NOEs confirmed the beta-sheet structure and assisted in the positioning of the alpha helices. The resulting preliminary characterization of the three-dimensional structure of the protein indicated that significant structural homology exists with the active site of the Klenow proofreading exonuclease domain, despite the extremely limited sequence homology. On the basis of this analogy, molecular modeling studies of epsilon186 were performed using as templates the crystal structures of the exonuclease domains of the Klenow fragment and the T4 DNA polymerase and the recently determined structure of the E. coli Exonuclease I. A multiple sequence alignment was constructed, with the initial alignment taken from the previously published hidden Markov model and NMR constraints. Because several of the published structures included complexed ssDNA, we were also able to incorporate an A-C-G trinucleotide into the epsilon186 structure. Nearly all of the residues which have been identified as mutators are located in the portion of the molecule which binds the DNA, with most of these playing either a catalytic or structural role.  相似文献   

10.
The solution structure of porcine pancreatic phospholipase A2 (124 residues, 14 kDa) has been studied by two-dimensional homonuclear 1H and two- and three-dimensional heteronuclear 15N-1H nuclear magnetic resonance spectroscopy. Backbone assignments were made for 117 of the 124 amino acids. Short-range nuclear Overhauser effect (NOE) data show three alpha-helices from residues 1-13, 40-58, and 90-109, an antiparallel beta-sheet for residues 74-85, and a small antiparallel beta-sheet between residues 25-26 and 115-116. A 15N-1H heteronuclear multiple-quantum correlation experiment was used to monitor amide proton exchange over a period of 22 h. In total, 61 amide protons showed slow or intermediate exchange, 46 of which are located in the three large helices. Helix 90-109 was found to be considerably more stable than the other helices. For the beta-sheets, four hydrogen bonds could be identified. The secondary structure of porcine PLA in solution, as deduced from NMR, is basically the same as the structure of porcine PLA in the crystalline state. Differences were found in the following regions, however. Residues 1-6 in the first alpha-helix are less structured in solution than in the crystal structure. Whereas in the crystal structure residues 24-29 are involved both in a beta-sheet with residues 115-117 and in a hairpin turn, the expected hydrogen bonds between residues 24-117 and 25-29 do not show slow exchange behavior. This and the absence of several expected NOEs imply that this region has a less well defined structure in solution. Finally, the hydrogen bond between residues 78-81, which is part of a beta-sheet, does not show slow exchange behavior.  相似文献   

11.
Nearly complete sequence-specific 1H, 13C, and 15N resonance assignments are reported for the backbone atoms of the receptor-binding domain of vascular endothelial growth factor (VEGF), a 23-kDa homodimeric protein that is a major regulator of both normal and pathological angiogenesis. The assignment strategy relied on the use of seven 3D triple-resonance experiments [HN(CO)CA, HNCA, HNCO, (HCA)CONH, HN(COCA)HA, HN(CA)HA, and CBCA-(CO)NH] and a 3D 15N-TOCSY-HSQC experiment recorded on a 0.5 mM (12 mg/mL) sample at 500 MHz, pH 7.0, 45 degrees C. Under these conditions, 15N relaxation data show that the protein has a rotational correlation time of 15.0 ns. Despite this unusually long correlation time, assignments were obtained for 94 of the 99 residues; 8 residues lack amide 1H and 15N assignments, presumably due to rapid exchange of the amide 1H with solvent under the experimental conditions used. The secondary structure of the protein was deduced from the chemical shift indices of the 1H alpha, 13C alpha, 13C beta, and 13CO nuclei, and from analysis of backbone NOEs observed in a 3D 15N-NOESY-HSQC spectrum. Two helices and a significant amount of beta-sheet structure were identified, in general agreement with the secondary structure found in a recently determined crystal structure of a similar VEGF construct [Muller YA et al., 1997, Proc Natl Acad Sci USA 94:7192-7197].  相似文献   

12.
Bacillus circulans xylanase (BCX) is a member of the family of low molecular weight endo-beta-(1,4)-xylanases. The main-chain 1H, 13C, and 15N resonances of this 20.4-kDa enzyme were assigned using heteronuclear NMR experiments recorded on a combination of selectively and uniformly labeled protein samples. Using chemical shift, NOE, J coupling, and amide hydrogen exchange information, 14 beta-strands, arranged in a network of three beta-sheets, and a single alpha-helix were identified in BCX. The NMR-derived secondary structure and beta-sheet topology agree closely with that observed in the crystal structure of this protein. The HN of Ile 118 has a strongly upfield-shifted resonance at 4.03 ppm, indicative of a potential amide-aromatic hydrogen bond to the indole ring of Trp 71. This interaction, which is conserved in all low molecular weight xylanases of known structure, may play an important role in establishing the active site conformation of these enzymes. Following hen egg white and bacteriophage T4 lysozymes, B. circulans xylanase represents the third family of beta-glycanases for which extensive NMR assignments have been reported. These assignments provide the background for detailed studies of the mechanism of carbohydrate recognition and hydrolysis by this bacterial xylanase.  相似文献   

13.
S Yajima  Y Muto  S Yokoyama  H Masaki  T Uozumi 《Biochemistry》1992,31(24):5578-5586
By performing 1H-1H and 1H-15N two-dimensional (2D) nuclear magnetic resonance (NMR) experiments, the complete sequence-specific resonance assignment was determined for the colicin E3 immunity protein (84 residues; ImmE3), which binds to colicin E3 and inhibits its RNase activity. First, the fingerprint region of the spectrum was analyzed by homonuclear 1H-1H HOHAHA and NOESY methods. For the identification of overlapping resonances, heteronuclear 1H-15N (HMQC-HOHAHA, HMQC-NOESY) experiments were performed, so that the complete 1H and 15N resonance assignments were provided. Then the secondary structure of ImmE3 was determined by examination of characteristic patterns of sequential backbone proton NOEs in combination with measurement of exchange rates of amide protons and 3JHN alpha coupling constants. From these results, it was concluded that ImmE3 contains a four-stranded antiparallel beta-sheet (residues 2-10, 19-22, 47-49, and 71-79) and a short alpha-helix (residues 31-36).  相似文献   

14.
Des-pentapeptide-insulin (DPI), a monomeric analogue which lacks the C-terminal five residues of the B-chain, provides a tractable model for 2D-NMR studies of insulin under a variety of solvent conditions. In this paper we present the sequential assignment of DPI at pH 1.8 and 25 degrees C in 10% deuterated DMSO/90% H2O; the chemical shifts are in general similar to those recently described in the absence of an organic cosolvent [1], in 20% acetic acid [2] and (for intact insulin) in 35% acetonitrile [3]. Under each of these solvent conditions qualitative analysis of the 2D-NMR data indicates that the major elements of secondary structure observed in the crystal state (three alpha-helices and B-chain beta-turn) are retained in solution. However, there is disagreement in the literature regarding the stability of the insulin fold, as monitored by amide-proton exchange rates and long-range nuclear Overhauser enhancements [1-3]. In contrast to a previous study [1], we observe slowly exchanging amide resonances (in freshly prepared D2O solutions) and nonlocal NOEs under each of the solvent conditions described, implying the existence of a stably folded secondary structure and hydrophobic core. The slowly-exchanging resonances are assigned to the central alpha-helix of the B-chain, the ends of the adjoining beta-turn, and the two A-chain alpha-helices. Qualitative analysis of long-range NOEs indicates that the major features of the crystal state are retained under these solvent conditions.  相似文献   

15.
Sequence-specific 1H and 13C NMR assignments have been made for residues that form the five-stranded parallel beta-sheet and the flavin mononucleotide (FMN) binding site of oxidized Anabaena 7120 flavodoxin. Interstrand nuclear Overhauser enhancements (NOEs) indicate that the beta-sheet arrangement is similar to that observed in the crystal structure of the 70% homologous long-chain flavodoxin from Anacystis nidulans [Smith et al. (1983) J. Mol. Biol. 165, 737-755]. A total of 62 NOEs were identified: 8 between protons of bound FMN, 29 between protons of the protein in the flavin binding site, and 25 between protons of bound FMN and protons of the protein. These constraints were used to determine the localized solution structure of the FMN binding site. The electronic environment and conformation of the protein-bound flavin isoalloxazine ring were investigated by determining 13C chemical shifts, one-bond 13C-13C and 15N-1H coupling constants, and three-bond 13C-1H coupling constants. The carbonyl edge of the flavin ring was found to be slightly polarized. The xylene ring was found to be nonplanar. Tyrosine 94, located adjacent to the flavin isoalloxazine ring, was shown to have a hindered aromatic ring flip rate.  相似文献   

16.
The enzyme IIIglc-like domain of Bacillus subtilis IIglc (IIIglc, 162 residues, 17.4 kDa) has been cloned and overexpressed in Escherichia coli. Sequence-specific assignment of the backbone 1H and 15N resonances has been carried out with a combination of homonuclear and heteronuclear two-dimensional and heteronuclear three-dimensional (3D) NMR spectroscopy. Amide proton solvent exchange rate constants have been determined from a series of 1H-15N heteronuclear single-quantum coherence (HSQC) spectra acquired following dissolution of the protein in D2O. Major structural features of IIIglc have been inferred from the pattern of short-, medium- and long-range NOEs in 3D heteronuclear 1H nuclear Overhauser effect 1H-15N multiple-quantum coherence (3D NOESY-HMQC) spectra, together with the exchange rate constants. IIIglc contains three antiparallel beta-sheets comprised of eight, three, and two beta-strands. In addition, five beta-bulges were identified. No evidence of regular helical structure was found. The N-terminal 15 residues of the protein appear disordered, which is consistent with their being part of the Q-linker that connects the C-terminal enzyme IIIglc-like domain to the membrane-bound IIglc domain. Significantly, two histidine residues, His 68 and His 83, which are important for phosphotransferase function, are found from NOE measurements to be in close proximity at the ends of adjacent strands in the major beta-sheet.  相似文献   

17.
Human glutaredoxin is a member of the glutaredoxin family, which is characterized by a glutathione binding site and a redox-active dithiol/disulfide in the active site. Unlike Escherichia coli glutaredoxin-1, this protein has additional cysteine residues that have been suggested to play a regulatory role in its activity. Human glutaredoxin (106 amino acid residues, M(r) = 12,000) has been purified from a pET expression vector with both uniform 15N labeling and 13C/15N double labeling. The combination of three-dimensional 15N-edited TOCSY, 15N-edited NOESY, HNCA, HN(CO)CA, and gradient sensitivity-enhanced HNCACB and HNCO spectra were used to obtain sequential assignments for residues 2-106 of the protein. The gradient-enhanced version of the HCCH-TOCSY pulse sequence and HCCH-COSY were used to obtain side chain 1H and 13C assignments. The secondary structural elements in the reduced protein were identified based on NOE information, amide proton exchange data, and chemical shift index data. Human glutaredoxin contains five helices extending approximately from residues 4-10, 24-36, 53-64, 83-92, and 94-104. The secondary structure also shows four beta-strands comprised of residues 15-19, 43-48, 71-75, 78-80, which form a beta-sheet almost identical to that found in E. coli glutaredoxin-1. Complete 1H, 13C, and 15N assignments and the secondary structure of fully reduced human glutaredoxin are presented. Comparison to the structures of other glutaredoxins is presented and differences in the secondary structure elements are discussed.  相似文献   

18.
This paper describes a simple, qualitative approach for the determination of membrane protein secondary structure and topology in lipid bilayer membranes. The approach is based on the observation of wheel-like resonance patterns observed in the NMR 1H-15N/15N polarization inversion with spin exchange at the magic angle (PISEMA) and 1H/15N heteronuclear correlation (HETCOR) spectra of membrane proteins in oriented lipid bilayers. These patterns, named Pisa wheels, have been previously shown to reflect helical wheel projections of residues that are characteristic of alpha-helices associated with membranes. This study extends the analysis of these patterns to beta-strands associated with membranes and demonstrates that, as for the case of alpha-helices, Pisa wheels are extremely sensitive to the tilt, rotation, and twist of beta-strands in the membrane. Therefore, the Pisa wheels provide a sensitive, visually accessible, qualitative index of membrane protein secondary structure and topology.  相似文献   

19.
To better understand the structural basis for the binding of proteinase-transformed human alpha2-macroglobulin (alpha2M) to its receptor, we have used three-dimensional multinuclear NMR spectroscopy to determine the secondary structure of the receptor binding domain (RBD) of human alpha2M. Assignment of the backbone NMR resonances of RBD was made using 13C/15-N and 15N-enriched RBD expressed in Escherichia coli. The secondary structure of RBD was determined using 1H and 13C chemical shift indices and inter- and intrachain nuclear Overhauser enhancements. The secondary structure consists of eight strands in beta-conformation and one alpha-helix, which together comprise 44% of the protein. The beta-strands form three regions of antiparallel beta-sheet. The two lysines previously identified as being critical for receptor binding are located in (Lys1374), and immediately adjacent to (Lys1370) the alpha-helix, which also contains an (Arg1378). Secondary structure predictions of other alpha-macroglobulins show the conservation of this alpha-helix and suggest an important role for this helix and for basic residues within it for receptor binding.  相似文献   

20.
Three-dimensional (3D) heteronuclear NMR techniques have been used to make sequential 1H and 15N resonance assignments for most of the residues of Lactobacillus casei dihydrofolate reductase (DHFR), a monomeric protein of molecular mass 18,300 Da. A uniformly 15N-labeled sample of the protein was prepared and its complex with methotrexate (MTX) studied by 3D 15N/1H nuclear Overhauser-heteronuclear multiple quantum coherence (NOESY-HMQC), Hartmann-Hahn-heteronuclear multiple quantum coherence (HOHAHA-HMQC), and HMQC-NOESY-HMQC experiments. These experiments overcame most of the spectral overlap problems caused by chemical shift degeneracies in 2D spectra and allowed the 1H-1H through-space and through-bond connectivities to be identified unambiguously, leading to the resonance assignments. The novel HMQC-NOESY-HMQC experiment allows NOE cross peaks to be detected between NH protons even when their 1H chemical shifts are degenerate as long as the amide 15N chemical shifts are nondegenerate. The 3D experiments, in combination with conventional 2D NOESY, COSY, and HOHAHA experiments on unlabelled and selectively deuterated DHFR, provide backbone assignments for 146 of the 162 residues and side-chain assignments for 104 residues of the protein. Data from the NOE-based experiments and identification of the slowly exchanging amide protons provide detailed information about the secondary structure of the binary complex of the protein with methotrexate. Sequential NHi-NHi+1 NOEs define four regions with helical structure. Two of these regions, residues 44-49 and 79-89, correspond to within one amino acid to helices C and E in the crystal structure of the DHFR.methotrexate.NADPH complex [Bolin et al. (1982) J. Biol. Chem. 257, 13650-13662], while the NMR-determined helix formed by residues 26-35 is about one turn shorter at the N-terminus than helix B in the crystal structure, which spans residues 23-34. Similarly, the NMR-determined helical region comprising residues 102-110 is somewhat offset from the crystal structure's helix F, which encompasses residues 97-107. Regions of beta-sheet structure were characterized in the binary complex by strong alpha CHi-NHi+1 NOEs and by slowly exchanging amide protons. In addition, several long-range NOEs were identified linking together these stretches to form a beta-sheet. These elements align perfectly with corresponding elements in the crystal structure of the DHFR.methotrexate.NADPH complex, which contains an eight-stranded beta-sheet, indicating that the main body of the beta-sheet is preserved in the binary complex in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号