首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have produced a library of 18 monoclonal antibodies (mABs) against wheat germ agglutinin (WGA). It was difficult to establish antibody-producing hybridomas when soluble WGA was used for immunization. The frequency of specific hybridomas was increased, however, by injecting mice with insoluble antigen-antibody complex.We distinguished groups of mABs that are especially efficient for particular immunoassays. One group (mABs 005, 006, 007, 009, 011, 014, 015, 016, 017, 018, 019) strongly immunostains denatured antigen on electroblots of sodium dodecyl sulfate polyacrylamide gels. A second group (all mABs except 012) shows high activity for WGA when native protein is analyzed by enzyme-linked immunosorbent assay. The third group (mABs 002, 005, 008, 009, 010, 011, 014, 016, 018, 019) works well for immunocytochemistry.We used the mABs to localize WGA in wheat varieties of various ploidy and with different ancestral wheat genomes. Whereas lectin is detected in the coleoptile of varieties with hexaploid and DD and SS genomes, WGA is absent in the coleoptile of the diploid Triticum monococcum (AA). Lectin accumulates in the coleoptile of mature embryos of T. monococcum, however, when they are treated with abscisic acid.Abbreviations ABA abscisic acid - ELISA enzyme-linked immunosorbent assay - Ig immunoglobulin - mAB monoclonal antibody - PAGE polyacrylamide gel electrophoresis - PBS 12 mM KH2PO4, 10 mM Na2HPO4, 25 mM KCl, and 140 mM NaCl, pH 7.2 - SDS sodium dodecyl sulfate - WGA wheat germ agglutinin  相似文献   

2.
Immunocytochemical localization of wheat germ agglutinin in wheat   总被引:11,自引:0,他引:11       下载免费PDF全文
Immunocytological techniques were developed to localize the plant lectin, wheat germ agglutinin (WGA), in the tissues and cells of wheat plants. In a previous study we demonstrated with a radioimmunoassay that the lectin is present in wheat embryos and adult plants both in the roots and at the base of the stem. We have now found, using rhodamine, peroxidase, and ferritin-labeled secondary antibodies, that WGA is located in cells and tissues that establish direct contact with the soil during germination and growth of the plant In the embryo, WGA is found in the surface layer of the radicle, the first adventitious roots, the coleoptile, and the scutellum. Although found throughout the coleorhiza and epiblast, it is at its highest levels within the cells at the surface of these organs. In adult plants, WGA is located only in the caps and tips of adventitious roots. Reaction product for WGA was not visualized in embryonic or adult leaves or in other tissues of adult plants. At the subcellular level, WGA is located at the periphery of protein bodies, within electron-translucent regions of the cytoplasm, and at the cell wall-protoplast interface. Since WGA is found at potential infection sites and is known to have fungicidal properties, it may function in the defense against fungal pathogens.  相似文献   

3.
R. C. Miller  D. J. Bowles 《Planta》1985,165(3):377-382
Field-grown wheat (Triticum aestivum L.) has been used as a developmental system to study the appearance of wheat-germ agglutinin during grain maturation. The lectin appears at the mid-grain growth period (30–34 days post-anthesis) and continues to be synthesised throughout the late stages of maturation and desiccation. An acidic endopeptidase activity, inhibited by pepstatin-phenanthroline is present in extracts of embryo and endosperm throughout maturation. After in-vivo labelling of immature embryos with [35S]methionine for 3 h and extraction in the presence of proteinase inhibitors, immunoprecipitates with anti-wheat-germ agglutinin were analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography, and found to contain three 35S-labelled polypeptides of Mr 46000, 18000 and 13000. Comparison of two-dimensional tryptic maps of 125I-labelled peptides indicate the three polypeptides are closely related.Abbreviations dpa days post-anthesis - PBS phosphate-buffered saline - RIA radioimmunoassay - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - WGA wheat-germ agglutinin  相似文献   

4.
Distribution of wheat germ agglutinin in young wheat plants   总被引:12,自引:7,他引:5       下载免费PDF全文
A liquid phase, competition-binding radioimmunoassay for wheat germ agglutinin, with a detection limit of 10 nanograms, was developed in order to determine the distribution of this lectin in young wheat plants. Affinity columns for wheat germ agglutinin removed all antigenically detectable activity from crude extracts of wheat tissue; thus, the antigenic cross-reactivity detected by the assay possesses sugar-binding specificity similar to the wheat germ-derived lectin. The amount of lectin per dry grain is approximately 1 microgram, all associated with the embryo. At 34 days of growth, the level of lectin per plant was reduced by about 50%, with approximately one-third in the roots and two-thirds in the shoot. The data also indicate that actively growing regions of the plant (the bases of the leaves and rapidly growing adventitious roots) contain the highest levels of lectin. Half of the lectin associated with the roots could be solubilized by washing intact roots in buffer containing oligomers of N-acetylglucosamine, whereas the remainder is liberated only upon homogenization of the tissue.  相似文献   

5.
The gluten lectin was isolated by affinity chromatography, separated by sodium dodecyl sulphate-gel electrophoresis together with purified wheat germ agglutinin (WGA) and electrotransferred to nitrocellulose filters. The binding pattern of anti-WGA to the blotted filters confirmed the presence of WGA in gluten. A lectin from rice bran and white rice flour, respectively, was isolated by affinity chromatography. Both lectins reacted with anti-WA in immunoblotting. As patients with coeliac disease are known to tolerate rice flour, the finding of a WGA-like lectin questioned the suggestion that WGA in gluten is involved in the pathogenesis of coeliac disease. A second lectin was also isolated from rice flour which reacted only with antibodies against soybean lectin on immunoblots. This may indicate a contamination of soybean proteins in rice flour.  相似文献   

6.
A calmodulin-sensitive adenylate cyclase has been purified to apparent homogeneity from bovine cerebral cortex using calmodulin-Sepharose followed by forskolin-Sepharose and wheat germ agglutinin-Sepharose. The final product appeared as one major polypeptide of approximately 135,000 daltons on sodium dodecyl sulfate-polyacrylamide gels. This polypeptide was a major component of the protein purified through calmodulin-Sepharose. The catalytic subunit was stimulated 3-4-fold by calmodulin (CaM) with a turnover number greater than 1000 min-1 and was directly inhibited by adenosine. The catalytic subunit of the enzyme interacted directly with 125I-CaM on a sodium dodecyl sulfate-polyacrylamide gel overlay system, and this interaction was Ca2+ concentration dependent. In addition, the catalytic subunit was shown to directly bind 125I-labeled wheat germ agglutinin using a sodium dodecyl sulfate-polyacrylamide gel overlay technique, and N-acetylglucosamine inhibited binding of the lectin to the catalytic subunit. Calmodulin did not inhibit binding of wheat germ agglutinin to the catalytic subunit, and the binding of calmodulin was unaffected by wheat germ agglutinin. These data illustrate that the catalytic subunit of the calmodulin-sensitive adenylate cyclase is a glycoprotein which interacts directly with calmodulin and that adenosine can inhibit the enzyme without intervening receptors or G coupling proteins. It is concluded that the catalytic subunit of adenylate cyclase is a transmembrane protein with a domain accessible from the outer surface of the cell.  相似文献   

7.
Wheat (Triticum aestivum) germ agglutinin represents a complex mixture of multiple isolectin forms. Upon ion exchange chromatography at pH 3.8, three isolectins can be separated, each of which is composed of two identical subunits. At pH 5.0, however, three additional isolectins can be distinguished, which are built up of two different subunits (heteromeric lectins). Evidence is presented that these heterodimers are normal constituents of the wheat embryo cells. Analyses of the isolectin patterns in extracts from Triticum monococcum, Triticum turgidum dicoccum and Triticum aestivum, provide evidence that each genome, either in simple or complex (polyploid) genomes, directs the synthesis of a single lectin subunit species. In addition, a comparison of the isolectin pattern in these wheat species of increasing ploidy level, made it possible to determine unequivocally the genome by which the individual lectin subunits in polyploid species are coded for. The possible use of lectins in studies on the origin of individual genoms in polyploid species is discussed.Abbreviations CL cereal lectin - PBS phosphate buffered saline - SP Sephadex sulfopropyl Sephadex - WGA wheat germ agglutinin  相似文献   

8.
Levels of wheat germ agglutinin have been determined by radioimmunoassay in tissues of immature wheat embryos cultured under different conditions in order to determine the suitability of the lectin as a marker for somatic embryogenesis. Embryos cultured on media favouring continued embryo development accumulated lectin in a similar manner to zygotic embryos in planta unless precocious germination occurred. Embryos cultured on media containing 2,4-D produced callus, and some of this developed somatic embryos. Both embryogenic and non-embryogenic callus contained WGA, that in non-embryogenic callus possibly arising from developmentally arrested root primordia.Abbreviations ABA abscisic acid - dpa days post anthesis - PBS phosphate buffered saline, (10 mM KH2PO4 K2HPO4, 145 mM NaCl, pH 7.4) - RIA radioimmunoassay - WGA wheat germ agglutinin - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

9.
Levels of endogenous abscisic acid (ABA) in immature wheat (Triticum aestivum cv. Timmo) and barley (Hordeum vulgare cv. Golden Promise) embryos have been determined by enzyme-linked immunosorbent assay. Embryos of both cereal species showed an increase in ABA content during development on the parent plant. Immature embryos were excised and cultured in vitro on nutrient media that led to precocious germination or on media containing 9% (w/v) mannitol that maintained their developmental arrest. Barley and wheat embryos responded to these culture conditions in an identical manner with respect to changes in morphology, fresh weight, protein and lectin content. However, in complete contrast, the ABA content of barley embryos increased by an order of magnitude during culture on mannitol, whereas that of wheat embryos showed no significant change. The results are discussed within the context of the role of ABA in the regulation of embryo development.Abbreviations ABA abscisic acid - BGA barley-germ agglutinin - dpa days post anthesis - ELISA enzyme-linked immunosorbent assay - GC-MS gas chromatography-mass spectrometry - WGA wheat-germ agglutinin  相似文献   

10.
Summary The chitin-binding lectin wheat germ agglutinin (WGA) is found at the periphery of wheat embryos, and a similar lectin is present at the root tips of older plants (Mishkind et al. 1982). Although a ferritin-conjugated secondary antibody is adequate for localizing WGA in embryos, native electron-opaque particles make the electron microscope identification of added label equivocal in other wheat tissues. As reported here, however, unambiguous ultrastructural localization of WGA-like lectin in adult wheat roots can be obtained with rabbit anti-WGA followed by colloidal gold-labeled goat anti-rabbit (GAR) IgG. Colloidal gold (CG) was prepared by the reduction of gold chloride with citrate, ascorbate or phosphorous. GAR IgG, prepared from serum by antigen affinity chromatograhy, was adsorbed to the gold particles to produce a stabilized suspension of GAR-CG. Localization was performed on 8–12 M frozen sections of tissue fixed in 4% paraformaldehyde, 0.3% glutaraldehyde, and 0.75% acrolein in phosphate-buffered saline containing 1M sucrose. Localization with GAR-CG was first compared to that ascertained in embryos using other probes and was then extended to the roots of adult plants. An advantage of the GARCG method is that it permits the visualization of antigen at both the light and electron microscope levels in the same section. At the light level, the anti-WGA-GAR-CG complex appears as a red stain that is localized in specific tissues of embryos and in the caps and outer layers of adult roots. Sections in which lectin was detected at the light microscope level were embedded in plastic and sectioned for subcellular examination. Electron dense gold particles indicative of WGA are found at the periphery of protein bodies in wheat embryos and in vacuoles of the roots of adult plants. Sections incubated with control IgG lack reaction product.  相似文献   

11.
The content of wheat germ agglutinin (WGA) in hydrogen peroxide-treated seedlings was studied by indirect competitive enzyme-linked immunosorbent assay. WGA content in roots showed a transitory increase: at 10 mM hydrogen peroxide, maximum level was observed after 2 h; at 1 mM hydrogen peroxide, the maximum occurred 2 or 24 h after the treatment. Lectin induction by hydrogen peroxide is viewed as an element of a feedback mechanism limiting the operation of defense responses during pathogenetic processes.  相似文献   

12.
The content of wheat germ agglutinin (WGA) in hydrogen peroxide-treated seedlings was studied by indirect competitive enzyme-linked immunosorbent assay. WGA content in roots showed a transitory increase: at 10 mM hydrogen peroxide, the maximum level was observed after 2 h; at 1 mM hydrogen peroxide, the maximum occurred 2 or 24 h after treatment. Lectin induction by hydrogen peroxide is viewed as an element of a feedback mechanism limiting the operation of defense responses during pathogenetic processes.  相似文献   

13.
Wheat germ agglutinin (WGA) levels in roots of 2-day-old wheat seedlings increased up to three-fold when stressed by air-drying. Similar results were obtained when seedling roots were incubated either in 0.5 molar mannitol or 180 grams per liter polyethylene glycol 6000, with a peak level of WGA after 5 hours of stress. Longer periods of osmotic treatment resulted in a gradual decline of WGA in the roots. Since excised wheat roots incorporate more [35S]cysteine into WGA under stress conditions, the observed increase of lectin levels is due to de novo synthesis. Measurement of abscisic acid (ABA) levels in roots of control and stressed seedlings indicated a 10-fold increase upon air-drying. Similarly, a five- and seven-fold increase of ABA content of seedling roots was found after 2 hours of osmotic stress by polyethylene glycol 6000 and mannitol, respectively. Finally, the stress-induced increase of WGA in wheat roots could be inhibited by growing seedlings in the presence of fluridone, an inhibitor of ABA synthesis. These results indicate that roots of water-stressed wheat seedlings (a) contain more WGA as a result of an increased de novo synthesis of this lectin, and (b) exhibit higher ABA levels. The stress-induced increase of lectin accumulation seems to be under control of ABA.  相似文献   

14.
A technique is introduced (Western enzyme-linked lectin analysis, WELLA) for detecting lectin-reactive cellular glycoproteins after separation on the basis of molecular weight in sodium dodecyl sulfate (SDS) polyacrylamide gels. Lectin-reactive glycoproteins are detected on Western transfers by reaction with lectin-peroxidase conjugates followed by development with hydrogen, peroxide and 4-chloro-1-naphthol which forms a purple-gray precipitate. WELLA is more rapid, more sensitive, and the bands are highly reproducible and better resolved than those obtained, by autoradiography of fluorography.Using this technique, we have detected human differentiation-related glycoproteins on cells of different hematological lineages. Both wheat germ agglutinin-peroxidase (WGA-P) and concanavalin A-peroxidase (ConA-P) detected distinct glycoprotein patterns on isolated peripheral blood platelets, lymphocytes, monocytes, erythrocytes and granulocytes. WGA-P detected numerous similarities between immature myeloid cells isolated from bone marrow and acute myelogenous leukemia cells, including major glycoproteins at 20 and 25 kDa. ConA-P detected a similar pattern of glycoproteins between isolated peripheral blood lymphocytes and T-cell acute lymphoblastic leukemia (T-ALL) cells. The T-ALL cells, however, had a major 200 kDa glycoprotein not present on lymphocytes. WGA-P also showed nearly identical patterns between the lymphocytes and the T-ALL cells, but detected prominent 200 and 250 kDa glycoproteins on the T-ALL cells which were absent from the lymphocytes. We have also detected polymorphic differences in the glycoproteins on lymphocytes from normal donors in the range of 95-100 kDa using ConA-P.Abbreviations WELLA Western enzyme-linked lectin analysis - SDS sodium dodecyl sulfate - BSA bovine serum albumin - PVP polyvinylpyrrolidone - PBS phosphate-buffered saline - AML acute myelogenous leukemia - ALL acute lymphocytic leukemia - WGA wheat germ agglutinin - Con A concanavalin A - WGA-P wheat germ agglutinin-peroxidase conjugate - ConA-P concanavalin A-peroxidase conjugate  相似文献   

15.
Root tips of wheat, rye, barley and rice seedlings contain lectins which are identical to the respective embryo lectins with respect to their molecular weight, sugar-specificity and serological properties. Using in vivo labelling techniques, it could be demonstrated that lectin is synthesized de novo in these tissues. The presence of lectin mRNA in seedlings was confirmed by in-vitro synthesis of lectin in root-tip extracts. Lectin synthesis occurs both in primary and first adventitious roots and is confined to the apical part (2mm) of the root. As seedling development proceeds, lectin synthesis in root tips gradually decreases. Adventitious roots of adult (five to six months old) wheat, rye and barley, but not rice, plants also contain lectins which are indistinguisable from the embryo lectins by the above-mentioned criteria. These lectins are synthesized in vivo in isolated root tips (5 mm) with labelled cysteine and in vitro in cell-free extracts prepared from root tips. Synthesis of lectin in roots of adult plants is also confined to the apical (2 mm) tip of the roots. At the molecular level, root lectin synthesis is very similar to that in embryos. All root lectins are synthesized as 23 000-Mr precursors which are post-translationally converted into the mature 18 000-Mr polypeptides. The observation that seedling roots and adventitious roots of six-month-old plants actively synthesize lectins strongly indicates that lectin genes are expressed in these tissues. In addition, since the root lectins are indistinguishable from the embryo lectins, we postulate that the same lectin genes are expressed.Abbreviations ABA abscisic acid - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - WGA wheat-germ agglutinin  相似文献   

16.
Summary Treatment of wheat (Triticum aestivum L.) seedlings with elicitors originating from either plant or fungal cell walls induces about a 2-fold increase of wheat germ agglutinin (WGA) in the roots. While the WGA content in roots of healthy plants normally decreases as a function of germination time, a transient accumulation of WGA could be observed in plants challenged with different fungi, including Rhizoctonia solani, Fusarium culmorum, Pythium ultimum and Neurospora crassa. Peak levels in challenged roots were 2 to 5 times as high as in control plants. Most of this induced WGA could be released from the roots by soaking them in a solution of the hapten N-acetylglucosamine. On the basis of the results obtained it is postulated that WGA may be involved in the defence of wheat against fungal attack.  相似文献   

17.
Wheat lectin (wheat germ agglutinin, WGA), a representative of a broad group of cereal lectins, is excreted by plant roots into the surrounding medium and interacts with both pathogenic microflora and growth-stimulating rhizobacteria. WGA was found to serve as a molecular signal for the rhizobacterium Azospirillum brasilense, which forms endophytic and associative symbioses with wheat plants. The bacterial response to the lectin was pleiotropic: WGA at concentrations from 10(-10) to 10(-6) M exerted a dose-dependent effect on a range of processes in the bacterium that are important for the establishment and functioning of symbiosis. Plants with different WGA content differed in their responses to severe nitrogen starvation and to seed treatment with Azospirillum.  相似文献   

18.
Wheat germ agglutinin is found in wheat embryos and a similar lectin is present in the roots of older plants. We report here that 10 micromolar abscisic acid (ABA) produces an average two to three-fold enhancement in the amount of lectin in the shoot base and the terminal portion of the root system of hydroponically grown wheat seedlings. Although ABA stunts seedling growth, a similar growth inhibition produced by ancymidol is not accompanied by elevated lectin levels. To further clarify the role of ABA, wheat callus cultures were employed. Callus derived from immature embryos was grown on growth medium containing various combinations of ABA and 2,4-dichlorophenoxyacetic acid. Those grown in the presence of 10 micromolar ABA exhibit the largest increases in lectin compared to material grown on other regimes. The involvement of ABA in lectin accumulation was further probed with fluridone, an inhibitor of carotenoid synthesis which has also been linked to depressed levels of endogenous ABA. Wheat seedlings grown in the presence of 1 or 10 milligrams per liter fluridone have few or no carotenoids, and wheat germ agglutinin levels in the shoot base and roots are lower compared to controls. The greatest effect (a 39% reduction in the shoot base) is produced at an herbicide concentration of 10 milligrams per liter. Exogenous 10 micromolar ABA greatly stimulates lectin accumulation in the presence of fluridone, but the levels are not as high as those produced by ABA alone. These results indicate that lectin synthesis is under ABA control in both wheat embryos and adult plants.  相似文献   

19.
Subunit exchange between lectins from different cereal species   总被引:1,自引:0,他引:1  
Lectins from Triticum monococcum, Secale cereale (rye), and Hordeum vulgare (barley) can exchange their subunits in vitro and thereby form (intergeneric) heteromeric lectins. An analysis of the isolectin pattern of a Triticale variety revealed that intergeneric heterodimers of wheat and rye lectin subunits are normal constituents of the embryo cells. It appears, therefore, that these different cereal lectins are structurally so closely related that their subunits can not distinguish between identical and nonidentical partners when they associate into dimers.Abbreviations CL cereal lectin - SP Sephadex sulfopropyl Sephadex - WGA wheat germ agglutinin  相似文献   

20.
Wheat lectin (wheat germ agglutinin, WGA), a representative of a broad group of cereal lectins, is excreted by plant roots into the surrounding medium and interacts with both pathogenic microflora and growth-stimulating rhizobacteria. WGA was found to serve as a molecular signal for the rhizobacterium Azospirillum brasilense, which forms endophytic and associative symbioses with wheat plants. The bacterial response to the lectin was pleiotropic: WGA at concentrations from 10?10 to 10?6 M exerted a dose-dependent effect on a range of processes in the bacterium that are important for the establishment and functioning of symbiosis. Plants with different WGA content differed in their responses to severe nitrogen starvation and to seed treatment with Azospirillum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号