首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selective isotopic labeling provides an unparalleled window within which to study the structure and dynamics of RNAs by high resolution NMR spectroscopy. Unlike commonly used carbon sources, the asymmetry of 13C-labeled pyruvate provides selective labeling in both the ribose and base moieties of nucleotides using E. coli variants, that until now were not feasible. Here we show that an E. coli mutant strain that lacks succinate and malate dehydrogenases (DL323) and grown on [3-13C]-pyruvate affords ribonucleotides with site specific labeling at C5′ (~95%) and C1′ (~42%) and minimal enrichment elsewhere in the ribose ring. Enrichment is also achieved at purine C2 and C8 (~95%) and pyrimidine C5 (~100%) positions with minimal labeling at pyrimidine C6 and purine C5 positions. These labeling patterns contrast with those obtained with DL323 E. coli grown on [1, 3-13C]-glycerol for which the ribose ring is labeled in all but the C4′ carbon position, leading to multiplet splitting of the C1′, C2′ and C3′ carbon atoms. The usefulness of these labeling patterns is demonstrated with a 27-nt RNA fragment derived from the 30S ribosomal subunit. Removal of the strong magnetic coupling within the ribose and base leads to increased sensitivity, substantial simplification of NMR spectra, and more precise and accurate dynamic parameters derived from NMR relaxation measurements. Thus these new labels offer valuable probes for characterizing the structure and dynamics of RNA that were previously limited by the constraint of uniformly labeled nucleotides.  相似文献   

2.
Selective isotopic labeling provides an unparalleled window within which to study the structure and dynamics of RNAs by high resolution NMR spectroscopy. Unlike commonly used carbon sources, the asymmetry of 13C-labeled pyruvate provides selective labeling in both the ribose and base moieties of nucleotides using Escherichia coli variants, that until now were not feasible. Here we show that an E. coli mutant strain that lacks succinate and malate dehydrogenases (DL323) and grown on [3-13C]-pyruvate affords ribonucleotides with site specific labeling at C5′ (~95%) and C1′ (~42%) and minimal enrichment elsewhere in the ribose ring. Enrichment is also achieved at purine C2 and C8 (~95%) and pyrimidine C5 (~100%) positions with minimal labeling at pyrimidine C6 and purine C5 positions. These labeling patterns contrast with those obtained with DL323 E. coli grown on [1, 3-13C]-glycerol for which the ribose ring is labeled in all but the C4′ carbon position, leading to multiplet splitting of the C1′, C2′ and C3′ carbon atoms. The usefulness of these labeling patterns is demonstrated with a 27-nt RNA fragment derived from the 30S ribosomal subunit. Removal of the strong magnetic coupling within the ribose and base leads to increased sensitivity, substantial simplification of NMR spectra, and more precise and accurate dynamic parameters derived from NMR relaxation measurements. Thus these new labels offer valuable probes for characterizing the structure and dynamics of RNA that were previously limited by the constraint of uniformly labeled nucleotides.  相似文献   

3.
Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at different carbon sites is shown to facilitate cost-effective and large scale production of useful nucleotides. These nucleotides are site specifically labeled in C1′ and C5′ with minimal scrambling within the ribose ring. To demonstrate the utility of this labeling approach, the new site-specific labeled and the uniformly labeled nucleotides were used to synthesize a 36-nt RNA containing the catalytically essential domain 5 (D5) of the brown algae group II intron self-splicing ribozyme. The D5 RNA was used in binding and relaxation studies probed by NMR spectroscopy. Key nucleotides in the D5 RNA that are implicated in binding Mg2+ ions are well resolved. As a result, spectra obtained using selectively labeled nucleotides have higher signal-to-noise ratio compared to those obtained using uniformly labeled nucleotides. Thus, compared to the uniformly 13C/15N-labeled nucleotides, these specifically labeled nucleotides eliminate the extensive 13C–13C coupling within the nitrogenous base and ribose ring, give rise to less crowded and more resolved NMR spectra, and accurate relaxation rates without the need for constant-time or band-selective decoupled NMR experiments. These position selective labeled nucleotides should, therefore, find wide use in NMR analysis of biologically interesting RNA molecules.  相似文献   

4.
Heteronuclear NMR spin relaxation studies of conformational dynamics are coming into increasing use to help understand the functions of ribozymes and other RNAs. Due to strong magnetic interactions within the ribose ring, however, these studies have thus far largely been limited to 13C and 15N resonances on the nucleotide base side chains. We report here the application of the alternate-site 13C isotopic labeling scheme, pioneered by LeMaster for relaxation studies of amino acid side chains, to nucleic acid systems. We have used different strains of E. coli to prepare mononucleotides containing 13C label in one of two patterns: Either C1′ or C2′ in addition to C4′, termed (1′/2′,4′) labeling, or nearly complete labeling at the C2′ and C4′ sites only, termed (2′,4′) labeling. These patterns provide isolated H spin systems on the labeled carbon atoms and thus allow spin relaxation studies without interference from scalar or dipolar coupling. Using relaxation studies of AMP dissolved in glycerol at varying temperature to produce systems with correlation times characteristic of different size RNAs, we demonstrate the removal of errors due to interaction in T 1 measurements of larger nucleic acids and in T measurements in RNA molecules. By extending the applicability of spin relaxation measurements to backbone ribose groups, this technology should greatly improve the flexibility and completeness of NMR analyses of conformational dynamics in RNA.  相似文献   

5.
Summary A three-dimensional 1H,13C,31P triple resonance experiment, HCP-CCH-TOCSY, is presented which provides unambiguous through-bond correlation of all 1H ribose protons on the 5′ and 3′ sides of the intervening phosphorus along the backbone bonding network in 13C-labeled RNA oligonucleotides. The correlation of the complete ribose spin system to the intervening phosphorus is obtained by adding a C,C-TOCSY coherence transfer step to the triple resonance HCP experiment. The C,C-TOCSY transfer step, which utilizes the large and relatively uniform 1J(C,C) coupling constant (∼40 Hz for ribose carbons), efficiently correlates the phosphorus-coupled carbons observed in the HCP correlation experiment (i.e., C4′ and C5′ in the 5′ direction and C4′ and C3′ in the 3′ direction) to all other carbons in the ribose spin system. Of the additional correlations observed in the HCP-CCH-TOCSY, that to the relatively well-resolved anomeric H1′, C1′ resonance pairs provides the greatest gain in terms of facilitating assignment. The gain in spectral resolution afforded by chemical shift labeling with the anomeric resonances should provide a more robust pathway for sequential assignment over the intervening phosphorus in larger RNA oligonucleotides. The HCP-CCH-TOCSY experiment is demonstrated on a uniformly 13C,15N-labeled 19-nucleotide RNA stem-loop, derived from the antisense RNA I molecule found in the ColE1 plasmid replication control system.  相似文献   

6.
Simulation and experiment have been used to establish that significant artifacts can be generated in X-pulse CPMG relaxation dispersion experiments recorded on heteronuclear ABX spin-systems, such as 13C i 13C j 1H, where 13C i and 13C j are strongly coupled. A qualitative explanation of the origin of these artifacts is presented along with a simple method to significantly reduce them. An application to the measurement of 1H CPMG relaxation dispersion profiles in an HIV-2 TAR RNA molecule where all ribose sugars are protonated at the 2′ position, deuterated at all other sugar positions and 13C labeled at all sugar carbons is presented to illustrate the problems that strong 13C–13C coupling introduces and a simple solution is proposed.  相似文献   

7.
We present here a set of 13C-direct detected NMR experiments to facilitate the resonance assignment of RNA oligonucleotides. Three experiments have been developed: (1) the (H)CC-TOCSY-experiment utilizing a virtual decoupling scheme to assign the intraresidual ribose 13C-spins, (2) the (H)CPC-experiment that correlates each phosphorus with the C4′ nuclei of adjacent nucleotides via J(C,P) couplings and (3) the (H)CPC-CCH-TOCSY-experiment that correlates the phosphorus nuclei with the respective C1′,H1′ ribose signals. The experiments were applied to two RNA hairpin structures. The current set of 13C-direct detected experiments allows direct and unambiguous assignment of the majority of the hetero nuclei and the identification of the individual ribose moieties following their sequential assignment. Thus, 13C-direct detected NMR methods constitute useful complements to the conventional 1H-detected approach for the resonance assignment of oligonucleotides that is often hindered by the limited chemical shift dispersion. The developed methods can also be applied to large deuterated RNAs.  相似文献   

8.
Escherichia coli (E. coli) is an ideal organism to tailor-make labeled nucleotides for biophysical studies of RNA. Recently, we showed that adding labeled formate enhanced the isotopic enrichment at protonated carbon sites in nucleotides. In this paper, we show that growth of a mutant E. coli strain DL323 (lacking succinate and malate dehydrogenases) on (13)C-2-glycerol and (13)C-1,3-glycerol enables selective labeling at many useful sites for RNA NMR spectroscopy. For DL323 E. coli grown in (13)C-2-glycerol without labeled formate, all the ribose carbon atoms are labeled except the C3' and C5' carbon positions. Consequently the C1', C2' and C4' positions remain singlet. In addition, only the pyrimidine base C6 atoms are substantially labeled to ~96% whereas the C2 and C8 atoms of purine are labeled to ~5%. Supplementing the growth media with (13)C-formate increases the labeling at C8 to ~88%, but not C2. Not unexpectedly, addition of exogenous formate is unnecessary for attaining the high enrichment levels of ~88% for the C2 and C8 purine positions in a (13)C-1,3-glycerol based growth. Furthermore, the ribose ring is labeled in all but the C4' carbon position, such that the C2' and C3' positions suffer from multiplet splitting but the C5' position remains singlet and the C1' position shows a small amount of residual C1'-C2' coupling. As expected, all the protonated base atoms, except C6, are labeled to ~90%. In addition, labeling with (13)C-1,3-glycerol affords an isolated methylene ribose with high enrichment at the C5' position (~90%) that makes it particularly attractive for NMR applications involving CH(2)-TROSY modules without the need for decoupling the C4' carbon. To simulate the tumbling of large RNA molecules, perdeuterated glycerol was added to a mixture of the four nucleotides, and the methylene TROSY experiment recorded at various temperatures. Even under conditions of slow tumbling, all the expected carbon correlations were observed, which indicates this approach of using nucleotides obtained from DL323 E. coli will be applicable to high molecular weight RNA systems.  相似文献   

9.
NMR-spectroscopy enables unique experimental studies on protein dynamics at atomic resolution. In order to obtain a full atom view on protein dynamics, and to study specific local processes like ring-flips, proton-transfer, or tautomerization, one has to perform studies on amino-acid side chains. A key requirement for these studies is site-selective labeling with 13C and/or 1H, which is achieved in the most general way by using site-selectively 13C-enriched glucose (1- and 2-13C) as the carbon source in bacterial expression systems. Using this strategy, multiple sites in side chains, including aromatics, become site-selectively labeled and suitable for relaxation studies. Here we systematically investigate the use of site-selectively 13C-enriched erythrose (1-, 2-, 3- and 4-13C) as a suitable precursor for 13C labeled aromatic side chains. We quantify 13C incorporation in nearly all sites in all 20 amino acids and compare the results to glucose based labeling. In general the erythrose approach results in more selective labeling. While there is only a minor gain for phenylalanine and tyrosine side-chains, the 13C incorporation level for tryptophan is at least doubled. Additionally, the Phe ζ and Trp η2 positions become labeled. In the aliphatic side chains, labeling using erythrose yields isolated 13C labels for certain positions, like Ile β and His β, making these sites suitable for dynamics studies. Using erythrose instead of glucose as a source for site-selective 13C labeling enables unique or superior labeling for certain positions and is thereby expanding the toolbox for customized isotope labeling of amino-acid side-chains.  相似文献   

10.
Generating sufficient quantities of labeled proteins represents a bottleneck in protein structure determination. A simple protocol for producing heavy isotope as well as selenomethionine (Se-Met)-labeled proteins was developed using T7-based Escherichia coli expression systems. The protocol is applicable for generation of single-, double-, and triple-labeled proteins (15N, 13C, and 2H) in shaker flask cultures. Label incorporation into the target protein reached 99% and 97% for 15N and 13C, respectively, and 75% of (non-exchangeable) hydrogen for 2H labeling. The expression yields and final cell densities (OD600 ∼16) were the same as for the production of non-labeled protein. This protocol is also applicable for Se-Met labeling, leading to Se-Met incorporation into the target protein of 70% or 90% using prototrophic or methionine auxotrophic E. coli strains, respectively.  相似文献   

11.
Analysis of the 13C isotopic labeling patterns of nucleoside monophosphates (NMPs) extracted from Escherichia coli grown in a mixture of C-1 and C-2 glucose is presented. By comparing our results to previous observations on amino acids grown in similar media, we have been able to rationalize the labeling pattern based on the well-known biochemistry of nucleotide biosynthesis. Except for a few notable absences of label (C4 in purines and C3′ in ribose) and one highly enriched site (C1′ in ribose), most carbons are randomly enriched at a low level (an average of 13%). These sparsely labeled NMPs give less complex NMR spectra than their fully isotopically labeled analogs due to the elimination of most 13C–13C scalar couplings. The spectral simplicity is particularly advantageous when working in ordered systems, as illustrated with guanosine diphosphate (GDP) bound to ADP ribosylation factor 1 (ARF1) aligned in a liquid crystalline medium. In this system, the absence of scalar couplings and additional long-range dipolar couplings significantly enhances signal to noise and resolution.  相似文献   

12.
Following long-term labeling with [1-13C]acetate, [2-13C]acetate, 13CO2, H13COOH, or 13CH3OH, NMR spectroscopy was used to determine the labeling patterns of the purified ribonucleosides of Methanospirillum hungatei, Methanococcus voltae, Methanobrevibacter smithii, Methanosphaera stadtmanae, Methanosarcina barkeri and Methanobacterium bryantii. Major differences were observed among the methanogens studied, specifically at carbon positions 2 and 8 of the purines, positions at which one-carbon carriers are involved during synthesis. In Methanospirillum hungatei and Methanosarcina barkeri, the labcl at both positions came from carbon atom C-2 of acetate, as predicted from known eubacterial pathways, whereas in Methanococcus voltae and Methanobacterium bryantii both originated from CO2. In Methanosphaera stadtmanae grown in the presence of formate, the C-2 of purines originated exclusively from formate and the C-8 was labeled by the C-2 of acetate. When grown in media devoid of formate, the C-2 of the purine ring originated mainly from the C-2 of acetate and in part from CH3OH. In Methanobrevibacter smithii grown in the presence of formate, C-2 and C-8 of purines were derived from CO2 and/or formate. The labeling patterns obtained for pyrimidines are consistent with the biosynthetic pathways common to eubacteria and eucaryotes.Abbreviations CODH Carbon monoxide dehydrogenase - FH4 tetrahydrofolate - H4MPT tetrahydromethanopterin Issued as NRCC Publication No. 37383  相似文献   

13.
Improved design of metabolic flux estimation using mixed label 13C labeling experiments and identifiability analysis motivated re-examination of metabolic fluxes during anaerobic fermentation in the Escherichia coli. Comprehensive metabolic flux maps were determined by using a mixture of differently labeled glucose and compared to conventional flux maps obtained using extracellular measurements and comprehensive metabolic flux maps obtained using only U-13C glucose as the substrate. As expected, conventional flux analysis performs poorly in comparison to 13C-MFA, especially in the Embden-Meyerhof-Parnas (EMP) and pentose phosphate (PP) pathways. Identifiability analysis indicated and experiments confirmed that a mixture of 10% U-l3C glucose, 25% 1-13C glucose, and 65% naturally labeled glucose significantly improved the statistical quality of all calculated fluxes in the PP pathway, the EMP pathway, the anaplerotic reactions, and the tricarboxylic acid cycle. Modifying the network topology for the presence and absence of the Entner-Doudoroff pathway and the glyoxylate shunt did not affect the value or quality of estimated fluxes significantly. Extracellular measurement of formate production was necessary for the accurate estimation of the fluxes around the formate node.  相似文献   

14.
A labeling scheme is introduced that facilitates the measurement of accurate 13Cβ chemical shifts of invisible, excited states of proteins by relaxation dispersion NMR spectroscopy. The approach makes use of protein over-expression in a strain of E. coli in which the TCA cycle enzyme succinate dehydrogenase is knocked out, leading to the production of samples with high levels of 13C enrichment (30–40%) at Cβ side-chain carbon positions for 15 of the amino acids with little 13C label at positions one bond removed (≈5%). A pair of samples are produced using [1-13C]-glucose/NaH12CO3 or [2-13C]-glucose as carbon sources with isolated and enriched (>30%) 13Cβ positions for 11 and 4 residues, respectively. The efficacy of the labeling procedure is established by NMR spectroscopy. The utility of such samples for measurement of 13Cβ chemical shifts of invisible, excited states in exchange with visible, ground conformations is confirmed by relaxation dispersion studies of a protein–ligand binding exchange reaction in which the extracted chemical shift differences from dispersion profiles compare favorably with those obtained directly from measurements on ligand free and fully bound protein samples.  相似文献   

15.
A simple labeling approach is presented based on protein expression in [1-13C]- or [2-13C]-glucose containing media that produces molecules enriched at methyl carbon positions or backbone Cα sites, respectively. All of the methyl groups, with the exception of Thr and Ile(δ1) are produced with isolated 13C spins (i.e., no 13C–13C one bond couplings), facilitating studies of dynamics through the use of spin-spin relaxation experiments without artifacts introduced by evolution due to large homonuclear scalar couplings. Carbon-α sites are labeled without concomitant labeling at Cβ positions for 17 of the common 20 amino acids and there are no cases for which 13Cα13CO spin pairs are observed. A large number of probes are thus available for the study of protein dynamics with the results obtained complimenting those from more traditional backbone 15N studies. The utility of the labeling is established by recording 13C R and CPMG-based experiments on a number of different protein systems.  相似文献   

16.
The dynamics of the nucleobase and the ribose moieties in a 14-nt RNA cUUCGg hairpin-loop uniformly labeled with 13C and 15N were studied by 13C spin relaxation experiments. R1, R and the 13C-{1H} steady-state NOE of C6 and C1′ in pyrimidine and C8 and C1′ in purine residues were obtained at 298 K. The relaxation data were analyzed by the model-free formalism to yield dynamic information on timescales of pico-, nano- and milli-seconds. An axially symmetric diffusion tensor with an overall rotational correlation time τc of 2.31±0.13 ns and an axial ratio of 1.35±0.02 were determined. Both findings are in agreement with hydrodynamic calculations. For the nucleobase carbons, the validity of different reported 13C chemical shift anisotropy values (Stueber, D. and Grant, D. M., 2002 J. Am. Chem. Soc. 124, 10539–10551; Fiala et al., 2000 J. Biomol. NMR 16, 291–302; Sitkoff, D. and Case, D. A., 1998 Prog. NMR Spectroscopy 32, 165–190) is discussed. The resulting dynamics are in agreement with the structural features of the cUUCGg motif in that all residues are mostly rigid (0.82 < S2 < 0.96) in both the nucleobase and the ribose moiety except for the nucleobase of U7, which is protruding into solution (S2 = 0.76). In general, ribose mobility follows nucleobase dynamics, but is less pronounced. Nucleobase dynamics resulting from the analysis of 13C relaxation rates were found to be in agreement with 15N relaxation data derived dynamic information (Akke et al., 1997 RNA 3, 702–709). Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

17.
We present a 13C direct detection CACA-TOCSY experiment for samples with alternate 13C–12C labeling. It provides inter-residue correlations between 13Cα resonances of residue i and adjacent Cαs at positions i − 1 and i + 1. Furthermore, longer mixing times yield correlations to Cα nuclei separated by more than one residue. The experiment also provides Cα-to-sidechain correlations, some amino acid type identifications and estimates for ψ dihedral angles. The power of the experiment derives from the alternate 13C–12C labeling with [1,3-13C] glycerol or [2-13C] glycerol, which allows utilizing the small scalar 3JCC couplings that are masked by strong 1JCC couplings in uniformly 13C labeled samples.  相似文献   

18.
We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273–6279 (1982)), types of amino acids are labeled with 13C or/and 15N such that cross peaks between 13CO(i – 1) and 15NH(i) result only for pairs of sequentially adjacent amino acids of which the first is labeled with 13C and the second with 15N. In this way, unambiguous sequence-specific assignments can be obtained for unique pairs of amino acids that occur exactly once in the sequence of the protein. To be practical, it is crucial to limit the number of differently labeled protein samples that have to be prepared while obtaining an optimal extent of labeled unique amino acid pairs. Our computer algorithm UPLABEL for optimal unique pair labeling, implemented in the program CYANA and in a standalone program, and also available through a web portal, uses combinatorial optimization to find for a given amino acid sequence labeling patterns that maximize the number of unique pair assignments with a minimal number of differently labeled protein samples. Various auxiliary conditions, including labeled amino acid availability and price, previously known partial assignments, and sequence regions of particular interest can be taken into account when determining optimal amino acid type-specific labeling patterns. The method is illustrated for the assignment of the human G-protein coupled receptor bradykinin B2 (B2R) and applied as a starting point for the backbone assignment of the membrane protein proteorhodopsin.  相似文献   

19.
A homology model of Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase (ATP + oxaloacetate ⇄ ADP + PEP + CO2) in complex with its substrates shows that the isobutyl group of Leu460 is in close proximity to the adenine ring of the nucleotide, while the carboxyl group of Glu299 is within hydrogen-bonding distance of the ribose 2′OH. The Leu460Ala mutation caused three-fold and seven-fold increases in the K m for ADPMn and ATPMn2−, respectively, while the Glu299Ala mutation had no effect. Binding studies showed losses of approximately 2 kcal mol−1 in the nucleotide binding affinity due to the Leu460Ala mutation and no effect for the Glu299Ala mutation. PEP carboxykinase utilized 2′deoxyADP and 2′deoxyATP as substrates with kinetic and equilibrium dissociation constants very similar to those of ADP and ATP, respectively. These results show that the hydrophobic interaction between Leu460 and the adenine ring of the nucleotide significantly contributed to the nucleotide affinity of the enzyme. The 2′deoxy nucleotide studies and the lack of an effect of the Glu299Ala mutation in nucleotide binding suggest that the possible hydrogen bond contributed by Glu299 and the ribose 2′OH group may not be relevant for nucleotide binding.  相似文献   

20.
A new acetylated flavonol glycoside: patuletin 3-O-[5′″-O-feruloyl-β-D-apiofuransyl (1′″→2′′)-β-D-glucopyranoside] (2), together with a known patuletin 3-O-β-D-glucopyranoside (1) were isolated from the aerial part of Artiplex littoralis L. (Chenopodiacease). Their structures were elcidated by acid hydrolysis and spectroscopic methods including UV, 1H, 13C NMR and ESI-MS for both compounds, additionally 2D-NMR, HSQC, HMBC experiments were performed for 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号