共查询到20条相似文献,搜索用时 15 毫秒
1.
Dematin is an actin-binding protein abundant in red blood cells and other tissues. It contains a villin-type ‘headpiece’ F-actin-binding
domain at its extreme C-terminus. The isolated dematin headpiece domain (DHP) undergoes a significant conformational change
upon phosphorylation. The mutation of Ser74 to Glu closely mimics the phosphorylation of DHP. We investigated motions in the
backbone of DHP and its mutant DHPS74E using several complementary NMR relaxation techniques: laboratory frame 15N NMR relaxation, which is sensitive primarily to the ps–ns time scale, cross-correlated chemical shift modulation NMR relaxation
detecting correlated μs–ms time scale motions of neighboring 13C′ and 15N nuclei, and cross-correlated relaxation of two 15N–1H dipole–dipole interactions detecting slow motions of backbone NH vectors in successive amino acid residues. The results
indicate a reduction in mobility upon the mutation in several regions of the protein. The additional salt bridge formed in
DHPS74E that links the N- and C-terminal subdomains is likely to be responsible for these changes.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
2.
Temperature-dependence of protein dynamics can provide information on details of the free energy landscape by probing the
characteristics of the potential responsible for the fluctuations. We have investigated the temperature-dependence of picosecond
to nanosecond backbone dynamics at carbonyl carbon sites in chicken villin headpiece subdomain protein using a combination
of three NMR relaxation rates: 13C′ longitudinal rate, and two cross-correlated rates involving dipolar and chemical shift anisotropy (CSA) relaxation mechanisms,
13C′/13C′-13Cα CSA/dipolar and 13C′/13C′–15N CSA/dipolar. Order parameters have been extracted using the Lipari-Szabo model-free approach assuming a separation of the
time scales of internal and molecular motions in the 2–16°C temperature range. There is a gradual deviation from this assumption
from lower to higher temperatures, such that above 16°C the separation of the time scales is inconsistent with the experimental
data and, thus, the Lipari-Szabo formalism can not be applied. While there are variations among the residues, on the average
the order parameters indicate a markedly steeper temperature dependence at backbone carbonyl carbons compared to that probed
at amide nitrogens in an earlier study. This strongly advocates for probing sites other than amide nitrogen for accurate characterization
of the potential and other thermodynamics characteristics of protein backbone. 相似文献
3.
The tetratricopeptide repeat (TPR) is a 34-amino acid helix-turn-helix motif that occurs in tandem arrays in numerous proteins. Here we compare the backbone dynamics of a natural 3-repeat TPR domain, from the protein UBP, with the behavior of a designed protein CTPR3, which consists of three identical consensus TPR units. Although the three tandem TPR repeats in both CTPR3 and UBP behave as a single unit, with no evidence of independent repeat motions, the data indicate that certain positions in UBP are significantly more flexible than are the corresponding positions in CTPR3. Most of the dynamical changes occur at or adjacent to positions that are involved in intra-repeat packing interactions. These observations lead us to suggest that the three-TPR domain of UBP does not incorporate optimized packing, compared to that seen in the idealized CTPR. The natural TPR domain is not only less stable overall than CTPR3, but also presents increased local flexibility at the positions where the sequences differs from the conserved consensus. 相似文献
4.
5.
6.
7.
E1 and E2 are two hepatitis C viral envelope glycoproteins that assemble into a heterodimer that is essential for membrane fusion and penetration into the target cell. Both extracellular and transmembrane (TM) glycoprotein domains contribute to this interaction, but study of TM–TM interactions has been limited because synthesis and structural characterization of these highly hydrophobic segments present significant challenges. In this NMR study, by successful expression and purification of the E2 transmembrane domain as a fusion construct we have determined the global fold and characterized backbone motions for this peptide incorporated in phospholipid micelles. Backbone resonance frequencies, relaxation rates and solvent exposure measurements concur in showing this domain to adopt a helical conformation, with two helical segments spanning residues 717–726 and 732–746 connected by an unstructured linker containing the charged residues D728 and R730 involved in E1 binding. Although this linker exhibits increased local motions on the ps timescale, the dominating contribution to its relaxation is the global tumbling motion with an estimated correlation time of 12.3 ns. The positioning of the helix–linker–helix architecture within the mixed micelle was established by paramagnetic NMR spectroscopy and phospholipid-peptide cross relaxation measurements. These indicate that while the helices traverse the hydrophobic interior of the micelle, the linker lies closer to the micelle perimeter to accommodate its charged residues. These results lay the groundwork for structure determination of the E1/E2 complex and a molecular understanding of glycoprotein heterodimerization. 相似文献
8.
Nagata T Kanno R Kurihara Y Uesugi S Imai T Sakakibara S Okano H Katahira M 《Journal of molecular biology》1999,287(2):315-330
Musashi1 is an RNA-binding protein abundantly expressed in the developing mouse central nervous system. Its restricted expression in neural precursor cells suggests that it is involved in the regulation of asymmetric cell division. Musashi1 contains two ribonucleoprotein (RNP)-type RNA-binding domains (RBDs), RBD1 and RBD2. Our previous studies showed that RBD1 alone binds to RNA, while the binding of RBD2 is not detected under the same conditions. Joining of RBD2 to RBD1, however, increases the affinity to greater than that of RBD1 alone, indicating that RBD2 contributes to RNA-binding. We have determined the three-dimensional solution structure of the C-terminal RBD (RBD2) of Musashi1 by NMR. It folds into a compact alpha beta structure comprising a four-stranded antiparallel beta-sheet packed against two alpha-helices, which is characteristic of RNP-type RBDs. Special structural features of RBD2 include a beta-bulge in beta2 and a shallow twist of the beta-sheet. The smaller 1H-15N nuclear Overhauser enhancement values for the residues of loop 3 between beta2 and beta3 suggest that this loop is flexible in the time-scale of nano- to picosecond order. The smaller 15N T2 values for the residues around the border between alpha2 and the following loop (loop 5) suggest this region undergoes conformational exchange in the milli- to microsecond time-scale. Chemical shift perturbation analysis indicated that RBD2 binds to an RNA oligomer obtained by in vitro selection under the conditions for NMR measurements, and thus the nature of the weak RNA-binding of RBD2 was successfully characterized by NMR, which is otherwise difficult to assess. Mainly the residues of the surface composed of the four-stranded beta-sheet, loops and C-terminal region are involved in the interaction. The appearance of side-chain NH proton resonances of arginine residues of loop 3 and imino proton resonances of RNA bases upon complex formation suggests the formation of intermolecular hydrogen bonds. The structural arrangement of the rings of the conserved aromatic residues of beta2 and beta3 is suitable for stacking interaction with RNA bases, known to be one of the major protein-RNA interactions, but a survey of the perturbation data suggested that the stacking interaction is not ideally achieved in the complex, which may be related to the weaker RNA-binding of RBD2. 相似文献
9.
Yong-Geun Choi Chin-Ju Park Hee-Eun Kim Yeo-Jin Seo Ae-Ree Lee Seo-Ree Choi Shim Sung Lee Joon-Hwa Lee 《Journal of biomolecular NMR》2015,61(2):137-150
Antifreeze proteins (AFPs) are found in a variety of cold-adapted (psychrophilic) organisms to promote survival at subzero temperatures by binding to ice crystals and decreasing the freezing temperature of body fluids. The type III AFPs are small globular proteins that consist of one α-helix, three 310-helices, and two β-strands. Sialic acids play important roles in a variety of biological functions, such as development, recognition, and cell adhesion and are synthesized by conserved enzymatic pathways that include sialic acid synthase (SAS). SAS consists of an N-terminal catalytic domain and a C-terminal antifreeze-like (AFL) domain, which is similar to the type III AFPs. Despite having very similar structures, AFL and the type III AFPs exhibit very different temperature-dependent stability and activity. In this study, we have performed backbone dynamics analyses of a type III AFP (HPLC12 isoform) and the AFL domain of human SAS (hAFL) at various temperatures. We also characterized the structural/dynamic properties of the ice-binding surfaces by analyzing the temperature gradient of the amide proton chemical shift and its correlation with chemical shift deviation from random coil. The dynamic properties of the two proteins were very different from each other. While HPLC12 was mostly rigid with a few residues exhibiting slow motions, hAFL showed fast internal motions at low temperature. Our results provide insight into the molecular basis of thermostability and structural flexibility in homologous psychrophilic HPLC12 and mesophilic hAFL proteins. 相似文献
10.
Cytochrome c oxidase is the terminal electron acceptor in the respiratory chains of aerobic organisms and energetically couples the reduction of oxygen to water to proton pumping across the membrane. The mechanisms of proton uptake, gating, and pumping have yet to be completely elucidated at the molecular level for these enzymes. For Rhodobacter sphaeroides CytcO (cytochrome aa3), it appears as though the E286 side chain of subunit I is a branching point from which protons are shuttled either to the catalytic site for O2 reduction or to the acceptor site for pumped protons. Amide hydrogen-deuterium exchange mass spectrometry was used to investigate how mutation of this key branching residue to histidine (E286H) affects the structures and dynamics of four redox intermediate states. A functional characterization of this mutant reveals that E286H CytcO retains approximately 1% steady-state activity that is uncoupled from proton pumping and that proton transfer from H286 is significantly slowed. Backbone amide H-D exchange kinetics indicates that specific regions of CytcO, perturbed by the E286H mutation, are likely to be involved in proton gating and in the exit pathway for pumped protons. The results indicate that redox-dependent conformational changes around E286 are essential for internal proton transfer. E286H CytcO, however, is incapable of these specific conformational changes and therefore is insensitive to the redox state of the enzyme. These data support a model where the side chain conformation of E286 controls proton translocation in CytcO through its interactions with the proton gate, which directs the flow of protons either to the active site or to the exit pathway. In the E286H mutant, the proton gate does not function properly and the exit channel is unresponsive. These results provide new insight into the structure and mechanism of proton translocation by CytcO. 相似文献
11.
Quinternet M Tsan P Selme L Beaufils C Jacob C Boschi-Muller S Averlant-Petit MC Branlant G Cung MT 《Biochemistry》2008,47(48):12710-12720
The DsbD protein is essential for electron transfer from the cytoplasm to the periplasm of Gram-negative bacteria. Its N-terminal domain dispatches electrons coming from cytoplasmic thioredoxin (Trx), via its central transmembrane and C-terminal domains, to its periplasmic partners: DsbC, DsbE/CcmG, and DsbG. Previous structural studies described the latter proteins as Trx-like folds possessing a characteristic C-X-X-C motif able to generate a disulfide bond upon oxidation. The Escherichia coli nDsbD displays an immunoglobulin-like fold in which two cysteine residues (Cys103 and Cys109) allow a disulfide bond exchange with its biological partners.We have determined the structure in solution and the backbone dynamics of the C103S mutant of the N-terminal domain of DsbD from Neisseria meningitidis. Our results highlight significant structural changes concerning the beta-sheets and the local topology of the active site compared with the oxidized form of the E. coli nDsbD. The structure reveals a "cap loop" covering the active site, similar to the oxidized E. coli nDsbD X-ray structure. However, regions featuring enhanced mobility were observed both near to and distant from the active site, revealing a capacity of structural adjustments in the active site and in putative interaction areas with nDsbD biological partners. Results are discussed in terms of functional consequences. 相似文献
12.
13.
Katahira M Miyanoiri Y Enokizono Y Matsuda G Nagata T Ishikawa F Uesugi S 《Journal of molecular biology》2001,311(5):973-988
Heterogeneous nuclear ribonucleoprotein (hnRNP) D0 has two ribonucleoprotein (RNP) -type RNA-binding domains (RBDs), each of which can specifically bind to the UUAG-sequence. hnRNP D0 also binds specifically to single-stranded d(TTAGGG)(n), the human telomeric DNA repeat. We have already reported the structure and interactions with RNA of the N-terminal RBD (RBD1). Here, the structure of the C-terminal RBD (RBD2) determined by NMR is presented. It folds into a compact alpha beta structure comprising an antiparallel beta-sheet packed against two alpha-helices, which is characteristic of RNP-type RBDs. In addition to the four beta-strands commonly found in RNP-type RBDs, an extra beta-strand, termed beta 4(-), was found just before the fourth beta-strand, yielding a five-stranded beta-sheet. Candidate residues of RBD2 involved in the interactions with RNA were identified by chemical shift perturbation analysis. Perturbation was detected on the beta-sheet side, not on the opposite alpha-helix side, as observed for RBD1. It is notable that the beta 4(-) to beta 4 region of RBD2 is involved in the interactions in contrast to the case of RBD1. The chemical shift perturbation analysis also showed that RBD2 interacts with DNA in essentially the same way as with RNA. Changes in the backbone dynamics upon complex formation with DNA were examined by means of model free analysis of relaxation data. In free RBD2, the beta 4(-) to beta 4 region exhibits slow conformational exchange on the milli- to microsecond time scale. The exchange is quenched upon complex formation. The flexibility of free RBD2 may be utilized in the recognition process by allowing different conformational states to be accessed and facilitating induced fit. Additionally, faster flexibility on the nano- to picosecond time scale was observed for loop 3 located between beta 2 and beta 3 in free RBD2, which is retained by the complex as well. 相似文献
14.
KatG, the catalase-peroxidase from Mycobacterium tuberculosis, has been characterized by resonance Raman, electron spin resonance, and visible spectroscopies. The mutant KatG(S315T), which is found in about 50% of isoniazid-resistant clinical isolates, is also spectroscopically characterized. The electron spin resonance spectrum of ferrous nitrosyl KatG is consistent with a proximal histidine ligand. The Fe-His stretching vibration observed at 244 cm(-1) for ferrous wild-type KatG and KatG(S315T) confirms the imidazolate character of the proximal histidine in their five-coordinate high-spin complexes. The ferrous forms of wild-type KatG and KatG(S315T) are mixtures of six-coordinate low-spin and five-coordinate high-spin hemes. The optical and resonance Raman signatures of ferric wild-type KatG indicate that a majority of the heme exists in a five-coordinate high-spin state, but six-coordinate hemes are also present. At room temperature, more six-coordinate low-spin heme is observed in ferrous and ferric KatG(S315T) than in the WT enzyme. While the nature of the sixth ligand of LS ferric wild-type KatG is not completely clear, visible, resonance Raman, and electron spin resonance data of KatG(S315T) indicate that its sixth ligand is a neutral nitrogen donor. Possible effects of these differences on enzyme activity are discussed. 相似文献
15.
Leone M Di Lello P Ohlenschläger O Pedone EM Bartolucci S Rossi M Di Blasio B Pedone C Saviano M Isernia C Fattorusso R 《Biochemistry》2004,43(20):6043-6058
No general strategy for thermostability has been yet established, because the extra stability of thermophiles appears to be the sum of different cumulative stabilizing interactions. In addition, the increase of conformational rigidity observed in many thermophilic proteins, which in some cases disappears when mesophilic and thermophilic proteins are compared at their respective physiological temperatures, suggests that evolutionary adaptation tends to maintain corresponding states with respect to conformational flexibility. In this study, we accomplished a structural analysis of the K18G/R82E Alicyclobacillus acidocaldarius thioredoxin (BacTrx) mutant, which has reduced heat resistance with respect to the thermostable wild-type. Furthermore, we have also achieved a detailed study, carried out at 25, 45, and 65 degrees C, of the backbone dynamics of both the BacTrx and its K18G/R82E mutant. Our findings clearly indicate that the insertion of the two mutations causes a loss of energetically favorable long-range interactions and renders the secondary structure elements of the double mutants more similar to those of the mesophilic Escherichia coli thioredoxin. Moreover, protein dynamics analysis shows that at room temperature the BacTrx, as well as the double mutant, are globally as rigid as the mesophilic thioredoxins; differently, at 65 degrees C, which is in the optimal growth temperature range of A. acidocaldarius, the wild-type retains its rigidity while the double mutant is characterized by a large increase of the amplitude of the internal motions. Finally, our research interestingly shows that fast motions on the pico- to nanosecond time scale are not detrimental to protein stability and provide an entropic stabilization of the native state. This study further confirms that protein thermostability is reached through diverse stabilizing interactions, which have the key role to maintain the structural folding stable and functional at the working temperature. 相似文献
16.
BACKGROUND: Calmodulin is a ubiquitous Ca(2+)-activated regulator of cellular processes in eukaryotes. The structures of the Ca(2+)-free (apo) and Ca(2+)-loaded states of calmodulin have revealed that Ca(2+) binding is associated with a transition in each of the two domains from a closed to an open conformation that is central to target recognition. However, little is known about the dynamics of this conformational switch. RESULTS: The dynamics of the transition between closed and open conformations in the Ca(2+)-loaded state of the E140Q mutant of the calmodulin C-terminal domain were characterized under equilibrium conditions. The exchange time constants (tau(ex)) measured for 42 residues range from 13 to 46 micros, with a mean of 21 +/- 3 micros. The results suggest that tau(ex) varies significantly between different groups of residues and that residues with similar values exhibit spatial proximity in the structures of apo and/or Ca(2+)-saturated wild-type calmodulin. Using data for one of these groups, we obtained an open population of p(o) = 0.50 +/- 0.17 and a closed --> open rate constant of k(o) = x 10(4) s(-1). CONCLUSIONS: The conformational exchange dynamics appear to involve locally collective processes that depend on the structural topology. Comparisons with previous results indicate that similar processes occur in the wild-type protein. The measured rates match the estimated Ca(2+) off rate, suggesting that Ca(2+) release may be gated by the conformational dynamics. Structural interpretation of estimated chemical shifts suggests a mechanism for ion release. 相似文献
17.
Structural dynamics of the membrane translocation domain of colicin E9 and its interaction with TolB
Collins ES Whittaker SB Tozawa K MacDonald C Boetzel R Penfold CN Reilly A Clayden NJ Osborne MJ Hemmings AM Kleanthous C James R Moore GR 《Journal of molecular biology》2002,318(3):787-804
In order for the 61 kDa colicin E9 protein toxin to enter the cytoplasm of susceptible cells and kill them by hydrolysing their DNA, the colicin must interact with the outer membrane BtuB receptor and Tol translocation pathway of target cells. The translocation function is located in the N-terminal domain of the colicin molecule. (1)H, (1)H-(1)H-(15)N and (1)H-(13)C-(15)N NMR studies of intact colicin E9, its DNase domain, minimal receptor-binding domain and two N-terminal constructs containing the translocation domain showed that the region of the translocation domain that governs the interaction of colicin E9 with TolB is largely unstructured and highly flexible. Of the expected 80 backbone NH resonances of the first 83 residues of intact colicin E9, 61 were identified, with 43 of them being assigned specifically. The absence of secondary structure for these was shown through chemical shift analyses and the lack of long-range NOEs in (1)H-(1)H-(15)N NOESY spectra (tau(m)=200 ms). The enhanced flexibility of the region of the translocation domain containing the TolB box compared to the overall tumbling rate of the protein was identified from the relatively large values of backbone and tryptophan indole (15)N spin-spin relaxation times, and from the negative (1)H-(15)N NOEs of the backbone NH resonances. Variable flexibility of the N-terminal region was revealed by the (15)N T(1)/T(2) ratios, which showed that the C-terminal end of the TolB box and the region immediately following it was motionally constrained compared to other parts of the N terminus. This, together with the observation of inter-residue NOEs involving Ile54, indicated that there was some structural ordering, resulting most probably from the interactions of side-chains. Conformational heterogeneity of parts of the translocation domain was evident from a multiplicity of signals for some of the residues. Im9 binding to colicin E9 had no effect on the chemical shifts or other NMR characteristics of the region of colicin E9 containing the TolB recognition sequence, though the interaction of TolB with intact colicin E9 bound to Im9 did affect resonances from this region. The flexibility of the translocation domain of colicin E9 may be connected with its need to recognise protein partners that assist it in crossing the outer membrane and in the translocation event itself. 相似文献
18.
Moncrieffe MC Juranic N Kemple MD Potter JD Macura S Prendergast FG 《Journal of molecular biology》2000,297(1):147-163
Heterogeneous fluorescence intensity decays of tryptophan in proteins are often rationalized using a model which proposes that different rotameric states of the indole alanyl side-chain are responsible for the observed fluorescence lifetime heterogeneity. We present here the study of a mutant of carp parvalbumin bearing a single tryptophan residue at position 102 (F102W) whose fluorescence intensity decay is heterogeneous and assess the applicability of a rotamer model to describe the fluorescence decay data. We have determined the solution structure of F102W in the calcium ligated state using multi-dimensional nuclear magnetic resonance (NMR) and have used the minimum perturbation mapping technique to explore the possible existence of multiple conformations of the indole moiety of Trp102 of F102W and, for comparison, Trp48 of holo-azurin. The maps for parvalbumin suggest two potential conformations of the indole side-chain. The high energy barrier for rotational isomerization between these conformers implies that interwell rotation would occur on time-scales of milliseconds or greater and suggests a rotamer basis for the heterogeneous fluorescence. However, the absence of alternate Trp102 conformers in the NMR data (to within 3 % of the dominant species) suggests that the heterogeneous fluorescence of Trp102 may arise from mechanisms independent of rotameric states of the Trp side-chain. The map for holo-azurin has only one conformation, and suggests a rotamer model may not be required to explain its heterogeneous fluorescence intensity decay. The backbone and Trp102 side-chain dynamics at 30 degrees C of F102W has been characterized based on an analysis of (15)N NMR relaxation data which we have interpreted using the Lipari-Szabo formalism. High order parameter (S(2)) values were obtained for both the helical and loop regions. Additionally, the S(2) values imply that the calcium binding CD and EF loops are not strictly equivalent. The S(2) value for the indole side-chain of Trp102 obtained from the fluorescence, NMR relaxation and minimum perturbation data are consistent with a Trp moiety whose motion is restricted. 相似文献
19.
An NMR-based molecular dynamics simulation of the interaction of the lac repressor headpiece and its operator in aqueous solution 总被引:2,自引:0,他引:2
The results of a 125 psec molecular dynamics simulation of a lac headpiece-operator complex in aqueous solution are reported. The complex satisfies essentially all experimental distance information derived from two-dimensional nuclear magnetic resonance (2-D-NMR) studies. The interaction between lac repressor headpiece and its operator is based on many direct- and water-mediated hydrogen bonds and nonpolar contacts which allow the formation of a tight complex. No stable hydrogen bonds between side chains and bases are found, while specific contacts occur between both nonpolar groups and, to a lesser extent, through water-mediated hydrogen bonds. The simulated complex structure in water is intrinsically stable without application of nuclear Overhauser effect (NOE) distance restraints, while being compatible with most of the available biochemical, genetic, and chemically induced dynamic nuclear polarization (CIDNP) data. 相似文献
20.
Yasuno K Yamazaki T Tanaka Y Kodama TS Matsugami A Katahira M Ishihama A Kyogoku Y 《Journal of molecular biology》2001,306(2):213-225