首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 184 毫秒
1.
The butterfly Apatura ilia is a species in the Northeast of China. There are billions of tiny scales on its wings, which overlap like roof tiles and completely cover the membrane, appearing as dust to people naked eye. The scales produce brilliant structural colour through their multilayer microstructure. In this paper, the microstructure and geometrical dimension of the scales were observed using a Scanning Electron Microscope (SEM). The cross section micro-configuration of the purple scales was achieved using a Transmission Electron Microscope (TEM). The reflectivity of the wing was measured by a spectrometer. The 3D multilayer microstructure of the ridges was optimized to 1D photonic crystal structure. The spectrometer experimental graph is in accord with the 1D photonic crystal simulation curves basically. In the end, the phenomenon of the purple structural colour was explained through the Snell equation.  相似文献   

2.
Anisotropism of the Non-Smooth Surface of Butterfly Wing   总被引:1,自引:0,他引:1  
Twenty-nine species of butterflies were collected for observation and determination of the wing surfaces using a ScanningElectron Microscope(SEM).Butterfly wing surface displays structural anisotropism in micro-,submicro- and nano-scales.Thescales on butterfly wing surface arrange like overlapping roof tiles.There are submicrometric vertical gibbosities,horizontallinks,and nano-protuberances on the scales.First-incline-then-drip method and first-drip-then-incline method were used tomeasure the Sliding Angle(SA)of droplet on butterfly wing surface by an optical Contact Angle(CA)measuring system.Relatively smaller sliding angles indicate that the butterfly wing surface has fine self-cleaning property.Significantly differentSAs in various directions indicate the anisotropic self-cleaning property of butterfly wing surface.The SAs on the butterfly wingsurface without scales are remarkably larger than those with scales,which proves the crucial role of scales in determining theself-cleaning property.Butterfly wing surface is a template for design and fabrication ofbiomimetic materials and self-cleaningsubstrates.This work may offer insights into how to design directional self-cleaning coatings and anisotropic wetting surface.  相似文献   

3.
Mole cricket (Gryllotalpa orientalis) is a typical animal living under ground. The soil-engaging components of mole cricket have the capacity of wear resistance against soil. In this paper, the foreleg, tergum and forewing of mole cricket were chosen as soil-engaging components and were observed by stereomicroscope (SM), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). The functions of the components were analyzed from the viewpoints of both entomology and bionics. The factors for function realization were found, and the single effect and coupling effect of these factors were investigated. Results show that the wear resistance characteristic of mole cricket is realized by biology coupling. The research of biology coupling provides a foundation to the technology of bionic coupling.  相似文献   

4.

Background

Ultrastructures in butterfly wing scales can take many shapes, resulting in the often striking coloration of many butterflies due to interference of light. The plethora of coloration mechanisms is dazzling, but often only single mechanisms are described for specific animals.

Results

We have here investigated the male Rajah Brooke’s birdwing, Trogonoptera brookiana, a large butterfly from Malaysia, which is marked by striking, colorful wing patterns. The dorsal side is decorated with large, iridescent green patterning, while the ventral side of the wings is primarily brown-black with small white, blue and green patches on the hindwings. Dense arrays of red hairs, creating a distinct collar as well as contrasting areas ventrally around the thorax, enhance the butterfly’s beauty. The remarkable coloration is realized by a diverse number of intricate and complicated nanostructures in the hairs as well as the wing scales. The red collar hairs contain a broad-band absorbing pigment as well as UV-reflecting multilayers resembling the photonic structures of Morpho butterflies; the white wing patches consist of scales with prominent thin film reflectors; the blue patches have scales with ridge multilayers and these scales also have centrally concentrated melanin. The green wing areas consist of strongly curved scales, which possess a uniquely arranged photonic structure consisting of multilayers and melanin baffles that produces highly directional reflections.

Conclusion

Rajah Brooke’s birdwing employs a variety of structural and pigmentary coloration mechanisms to achieve its stunning optical appearance. The intriguing usage of order and disorder in related photonic structures in the butterfly wing scales may inspire novel optical materials as well as investigations into the development of these nanostructures in vivo.
  相似文献   

5.
Stelzer  Ralf  Lehmann  Heiner 《Plant and Soil》1993,155(1):33-43
This paper reviews recent technical approaches to the study of element localization in plant cells. It is concerned with sample preparation; with the use of electron probe microanalysis in the low temperature scanning electron microscope; with the use of electron energy loss spectrocopy and electron spectroscopic imaging in the transmission electron microscope. Basic principles of instrumentation, special problems during cryopreparation of plant tissues, and the application of these techniques within selected fields of botanical interests are briefly discussed.Abbreviations EDXA Energy Dispersive X-Ray Analysis - EELS Electron Energy Loss Spectrometry - EPMA Electron Probe Microanalysis - ESEM Environmental Scanning Electron Microscope - ESI Electron Spectroscopic Imaging - HPF High Pressure Freezing - LTSEM Low Temperature Scanning Electron Microscope - SEM Scanning Electron Micrsocope - TEM Transmission Electron Microscope Botanisches Institut der Tierärztlichen Hochschule HannoverDedicated to Professor André Läuchli on the occasion of his 60th birthday  相似文献   

6.
We have found that cover scales on the wing of the butterfly Morpho didius possess specially designed microscopic structures for wavelength-selective reflection and contribute considerably to the brilliant blue colour of the wing. In addition, the cover scale functions as an anisotropic optical diffuser which diffuses light only in one plane, while it makes the range of reflection narrower in the orthogonal plane. The quantitative analyses for the wavelength-selection mechanism and the peculiar optical diffuser are given and the role of such a special optical effect is discussed from physical and biological viewpoints.  相似文献   

7.
Many species of owls are able to fly noiselessly,and their wing feathers play an important role for the silent flight.In this paper,we studied the sound suppression mechanism of the eagle owl (Bubo bubo) by Stereo Microscope (SM),Scanning Electron Microscopy (SEM) and Laser Scanning Confocal Microscope (LSCM).To investigate the effects of special characteristics of wing feather on owl silent flight,the acoustic properties,including the sound absorption coefficient and flight noise,were compared between the eagle owl and common buzzard (Buteo buteo).The results show that the eagle owl generates lower noise than common buzzard during flight,and its wing feather has better sound absorption properties.The leading edge serration and trailing edge fringe can improve the pressure fluctuation of turbulence boundary,and suppress the generation of vortex sound.The elongated distal barbules form a multi-layer grid porous structure which also has an effect on sound absorption.This research not only can give the inspiration for solving the aerodynamic noise of aircraft and engineering machine,but also can provide a new idea for the design of low-noise devices.  相似文献   

8.
Chen  Ke  Wang  Yuanyuan  Wang  Haisuo  Wu  Rui  Yu  Xiaopeng  Shi  Hongyang  Zheng  Hongmei 《Plasmonics (Norwell, Mass.)》2019,14(2):335-346

Improving the silicon layer’s optical absorption is a key research point for crystalline silicon based thin film solar cells. Light trapping is a method widely adopted to achieve this research purpose. In this paper, we propose low loss interface photonic crystals layer (IPC), which is sandwiched between the crystalline silicon layer and the cover layer. The low loss interface photonic crystals layer could boost the light trapping efficiency significantly. The mechanism is that the smaller refraction index difference between silicon layer and the low loss interface photonic crystals layer could reduce the light’s interface reflection. Taking advantage of the coupling calculation by optical and electrical simulations, solar cell’s absorption efficiency and electrical performance parameters are obtained. Compared with optimized reference group, the maximum output power of the proposed solar cell could be improved by 6.44%. The result indicates that the proposed low loss interface photonic crystals layer is applicable for light’s trapping in crystalline silicon thin film solar cells.

  相似文献   

9.
Modulation of surface properties of biomembranes by any ligand leading to permeabilization, fusion, rupture, etc. is a fundamental requirement for many biological processes. In this work, we present the interaction of piroxicam, a long acting Non-Steroidal Anti-Inflammatory Drug (NSAID) with isolated mitochondria, membrane mimetic systems, intact cells and a mitochondrial protein cytochrome c. Dye permeabilization study on isolated mitochondria indicates that piroxicam can permeabilize mitochondrial membrane. Direct imaging by Scanning Electron Microscope (SEM) shows that piroxicam induces changes in mitochondrial membrane morphology leading to fusion and rupture. Transmission Electron Microscope (TEM) imaging of piroxicam treated DMPC vesicles and mixed micelles formed from CTAB and SDS show that causing membrane fusion is a general property of piroxicam at physiological pH. In intact cells viz., V79 Chinese Hamster lung fibroblast, piroxicam is capable of releasing cytochrome c from mitochondria into the cytosol in a dose dependent manner along with the enhancement of downstream proapoptotic event viz., increase in caspase-3 activity. We have also shown that piroxicam can reduce cytochrome c within a time frame relevant to its lifetime in blood plasma. UV-visible spectroscopy has been used to study the reaction mechanism and kinetics in detail, allowing us to propose and validate a Michaelis-Menten like reaction scheme. CD spectroscopy shows that small but significant changes occur in the structure of cytochrome c when reduced by piroxicam.  相似文献   

10.
A few species of Morpho butterflies have a distinctive white stripe pattern on their structurally coloured blue wings. Since the colour pattern of a butterfly wing is formed as a mosaic of differently coloured scales, several questions naturally arise: are the microstructures the same between the blue and white scales? How is the distinctive whiteness produced, structurally or by means of pigmentation? To answer these questions, we have performed structural and optical investigations of the stripe pattern of a butterfly, Morpho cypris. It is found that besides the dorsal and ventral scale layers, the wing substrate also has the corresponding stripe pattern. Quantitative optical measurements and analysis using a simple model for the wing structure reveal the origin of the higher reflectance which makes the white stripe brighter.  相似文献   

11.
Intermediate band solar cells are a new generation of photovoltaics that allow for better utilization of the solar spectrum. The key and most challenging requirement for these cells is an efficient optical coupling between the intermediate band and the charge conducting bands. GaNAs based intermediate band solar cells have been used to generate electroluminescence. Two electroluminescence peaks are generated in the structure with electrically blocked intermediate band. The peaks are observed for both forward and reverse bias configuration and are attributed to optical transitions from the conduction to the intermediate band, and from the intermediate band to the valence band. The origin of the electroluminescence is confirmed by the temperature dependence of the electroluminescence peak energies that is consistent with the band anticrossing model of the intermediate band formation in dilute nitride alloys. This is the first direct observation of the optical transitions required for the operation of intermediate band solar cells. The results also demonstrate that properly modified intermediate band solar cell structures could be used as multicolor light emitters.  相似文献   

12.
In most species of lepidopteran insects, anteroposterior rows formed by scales are arranged at regular intervals in the adult wing; within each row two kinds of scales are alternately arranged. To investigate the cellular basis for the scale arrangement pattern, we examined cell arrangement in the epidermal monolayer of the pupal wing of a small white cabbage butterfly, Pieris rapae , by scanning electron microscopy and light microscopy.
The arrangement of scale precursor cells, closely resembling that of scales in the adult wing, was observed in the wing epidermis of the early pupa. Scale precursor cells are proximodistally elongated and form anteroposterior rows. Within a row two kinds of scale precursor cells are nearly alternately arranged, which is not so precise as the alternation of scales in the adult wing. Individual rows of scale precursor cells are separated by rows of single or double undifferentiated general epidermal cells. Occasionally, arrangement abnormalities occur both in the adult and the pupal wing. The cellular basis for the regular spacing of scale rows is discussed.  相似文献   

13.
Seeds of 39 species representing all native genera and sections of New WorldAntirrhineae were examined with the Scanning Electron Microscope and Light Microscope. Based on seed shape and surface ornamentation, seven morphological categories are recognized: cristate, tetracostate, foveolate, tumid tuberculate/cristate, circumalate, medusiform, and a miscellaneous category. Most sections and/or generic categories can be characterized by a single morphological type, althoughMaurandya s.l. has several distinctive seed types included within present generic boundaries. The cristate seed type is believed to be the “primitive type” from which the medusiform and tumid tuberculate/cristate types have developed. The tumid tuberculate/cristate type presumably gave rise to the circumalate, tetracostate, and foveolate patterns. The miscellaneous category (represented byLinaria andKickxia) may be phyletically remote from the other New World types. Seeds of the New WorldAntirrhineae mostly seem to be adapted for water dispersal although some adaptations for wind dispersal (e.g. wings, light weight) are evident. Free-hand sections and seed coat clearings indicate that circumalate seeds are of two different anatomical patterns; such structural diversity may be found in the other seed types.  相似文献   

14.
In green chemistry, the application of a biogenic material as a mediator in nanoparticles formation is an innovative nanotechnology. Our current investigation aimed at testing the cytotoxic potential and antimicrobial ability of silver nanoparticles (AgNPs) that were prepared using Calligonum comosum roots and Azadirachta indica leaf extracts as stabilizing and reducing agents. An agar well diffusion technique was employed to detect synthesized AgNPs antibacterial ability on Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus bacterial strains. Furthermore, their cytotoxic capability against LoVo, MDA-MB231 and HepG2 ca cells was investigated. For phyto-chemical detection in the biogenic AgNPs the Fourier-transform infrared spectroscopy (FT-IR) was considered. Zeta sizer, TEM (Transmission Electron Microscope) and FE-SEM (Field Emission Scanning Electron Microscope) were used to detect biogenic AgNPs’ size and morphology. The current results showed the capability of tested plant extract for conversion of Ag ions to AgNPs with a mean size ranging between 90.8 ± 0.8 and 183.2 ± 0.7 nm in diameter. Furthermore, prepared AgNPs exhibited apoptotic potential against HepG2, LoVo, and MDA-MB 231cell with IC50 ranging between 10.9 and 21.4 μg/ml and antibacterial ability in the range of 16.0 ± 0.1 to 22.0 ± 1.8 mm diameter. Activation of caspases in AgNPs treated cells could be the main indicator for their positive effect causing apoptosis. The current investigation suggested that the green production of AgNPs could be a suitable substitute to large-scale production of AgNPs, since stable and active nanoparticles could be obtained.  相似文献   

15.
Colors and pterin pigmentation of pierid butterfly wings   总被引:2,自引:0,他引:2  
The reflectance of pierid butterfly wings is principally determined by the incoherent scattering of incident light and the absorption by pterin pigments in the scale structures. Coherent scattering causing iridescence is frequently encountered in the dorsal wings or wing tips of male pierids. We investigated the effect of the pterins on wing reflectance by local extraction of the pigments with aqueous ammonia and simultaneous spectrophotometric measurements. The ultraviolet-absorbing leucopterin was extracted prominently from the white Pieris species, and the violet-absorbing xanthopterin and blue-absorbing erythropterin were mainly derived from the yellow- and orange-colored Coliadinae, but they were also extracted from the dorsal wing tips of many male Pierinae. Absorption spectra deduced from wing reflectance spectra distinctly diverge from the absorption spectra of the extracted pigments, which indicate that when embedded in wing scales the pterins differ from those in solution. The evolution of pierid wing coloration is discussed.  相似文献   

16.
Robert J. Hill 《Brittonia》1976,28(1):86-112
Six hundred seeds belonging to the genusMentzelia (Loasaceae) were examined using the Scanning Electron Microscope. The seeds represented all six sections of the genus and approximately 76% of the total number of species from northern Mexico and western United States. Emphasis was placed on seed material from Wyoming and adjoining states. Ovule serial sectioning was done to determine testa ontogeny. In all cases seed surface structures could be related to excrescences developing from the integument cells. Six basic seed coat relief features could be distinguished, corresponding to the six sections in the genus. Minor variations in the basic types are constant and characteristic for species or, in very few instances, for species groups. A dendrogram was constructed from the seed testa data which supports the phylogeny established from chromosomal and morphological data. Practical application of seed coat microcharacter specificity to identification ofMentzelia seeds from prehistoric sites is suggested.  相似文献   

17.
The angular and spectral reflectance of single scales of five different butterfly species was measured and related to the scale anatomy. The scales of the pierids Pieris rapae and Delias nigrina scatter white light randomly, in close agreement with Lambert’s cosine law, which can be well understood from the randomly organized beads on the scale crossribs. The reflectance of the iridescent blue scales of Morpho aega is determined by multilayer structures in the scale ridges, causing diffraction in approximately a plane. The purple scales in the dorsal wing tips of the male Colotis regina act similarly as the Morpho scale in the blue, due to multilayers in the ridges, but the scattering in the red occurs as in the Pieris scale, because the scales contain beads with pigment that does not absorb in the red wavelength range. The green–yellow scales of Urania fulgens backscatter light in a narrow spatial angle, because of a multilayer structure in the scale body.  相似文献   

18.
It is known that the light scattering from the metal particles deposited on the surfaces of cells can be used for increasing light trapping in the solar cells. In this work, plasmonic structures are composite materials that consisted of silver nanoparticles embedded in dielectric films of TiO x —used as cell antireflection coating. The films are deposited by sol–gel method using spin-on technique. Microstructure of prepared samples is analyzed by SEM observation. Good homogenity and particles density was obtained by this simple, cheap, and short time-demanding method. We demonstrate that due to light scattering by metal particles, the plasmonic-ARC layer is more effective than TiO x layer without Ag nanoparticles. Implementation of nanoparticles on bare cell surface was carried out too. The influence of the plasmonic structures on the silicon solar cells parameters is presented as well. We announce about 5 % additional growth in short circuit current for cells with nanoparticles.  相似文献   

19.
Achieving light harvesting is crucial for the efficiency of the solar cell. Constructing optical structures often can benefit from micro‐nanophotonic imprinting. Here, a simple and facile strategy is developed to introduce a large area grating structure into the perovskite‐active layer of a solar cell by utilizing commercial optical discs (CD‐R and DVD‐R) and achieve high photovoltaic performance. The constructed diffraction grating on the perovskite active layer realizes nanophotonic light trapping by diffraction and effectively suppresses carrier recombination. Compared to the pristine perovskite solar cells (PSCs), the diffraction‐grating perovskite devices with DVD obtain higher power conversion efficiency and photocurrent density, which are improved from 16.71% and 21.67 mA cm?2 to 19.71% and 23.11 mA cm?2. Moreover, the stability of the PSCs with diffraction‐grating‐structured perovskite active layer is greatly enhanced. The method can boost photonics merge into the remarkable perovskite materials for various applications.  相似文献   

20.
Butterfly wing color patterns are determined during the late larval and early pupal stages. Characterization of wing epithelial cells at these stages is thus critical to understand how wing structures, including color patterns, are determined. Previously, we successfully recorded real-time in vivo images of developing butterfly wings over time at the tissue level. In this study, we employed similar in vivo fluorescent imaging techniques to visualize developing wing epithelial cells in the late larval and early pupal stages 1 hour post-pupation. Both larval and pupal epithelial cells were rich in mitochondria and intracellular networks of endoplasmic reticulum, suggesting high metabolic activities, likely in preparation for cellular division, polyploidization, and differentiation. Larval epithelial cells in the wing imaginal disk were relatively large horizontally and tightly packed, whereas pupal epithelial cells were smaller and relatively loosely packed. Furthermore, larval cells were flat, whereas pupal cells were vertically elongated as deep as 130 μm. In pupal cells, many endosome-like or autophagosome-like structures were present in the cellular periphery down to approximately 10 μm in depth, and extensive epidermal feet or filopodia-like processes were observed a few micrometers deep from the cellular surface. Cells were clustered or bundled from approximately 50 μm in depth to deeper levels. From 60 μm to 80 μm in depth, horizontal connections between these clusters were observed. The prospective eyespot and marginal focus areas were resistant to fluorescent dyes, likely because of their non-flat cone-like structures with a relatively thick cuticle. These in vivo images provide important information with which to understand processes of epithelial cell differentiation and color pattern determination in butterfly wings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号