首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following uptake of [(3)H]zeatin riboside and [(3)H]dihydrozeatin riboside by girdled lupin (Lupinus angustifolius L.) stems via the transpiration stream, rapid lateral movement of the radioactivity from xylem to bark was observed. Short-term studies with intact stems, and other studies with excised stem tissues, revealed that the ribosides and/or the corresponding nucleotides were the cytokinin forms which actually moved into the bark tissues. Relative to cytokinin metabolism in xylem plus pith, metabolism in bark was both more rapid and more complex. Riboside cleavage and formation of the O-acetylzeatin and O-acetyldihydrozeatin ribosides and nucleotides were almost completely confined to bark tissues. Exogenous (3)H-labelled O-acetylzeatin riboside was converted to zeatin riboside in bark tissue, but the presence of the acetyl group suppressed degradation to adenine metabolites. The sequestration and modification of xylem cytokinins by stem tissues probably contributes significantly to the cytokinin status of the shoot. New cytokinins identified by mass spectrometry in lupin were: O-acetyldihydrozeatin 9-riboside, a metabolite of exogenous dihydrozeatin riboside in stem bark; O-methylzeatin nucleotide and O-methyldihydrozeatin 9-riboside, metabolites of endogenous cytokinins in stem bark; O-methylzeatin nucleotide and O-methylzeatin 9-riboside, metabolites of exogenous zeatin riboside in excised pod walls.  相似文献   

2.
Hydraulic specific conductivity, vulnerability to cavitation and water storage capacity of Douglas-fir sapwood was determined for samples from six young (1.0-1.5 m tall) and six mature trees (41-45 m tall). Measurements on samples from young trees showedthere were no effects of two contrasting sample types (entire stem segments vs sectors chiseled out of entire stems) on any of the calculated hydraulic parameters, for vulnerability to cavitation and water storage capacity. Measurements on mature trees were made on wood from four heights on the bole and from two sapwood depths. Outer and inner sapwood at the base of the tree had higher water storage capacities and were more vulnerable to cavitation than was sapwood from the tree top. At every height, old trees were more vulnerable to cavitation than at 1.0 m from the ground in young trees. The water storage capacities showed three distinct phases at the base of the trunk. Young trees had similar water storage capacity (per unit volume of sapwood) to the topof the mature trees, which was lower than the water storage capacity throughout the rest of the bole xylem. The way in which capacitance was calculated (on a volumetric basis vs a relative water content basis) affected the conclusion one would draw at the low water potentials (<-3 MPa). Within a tree, we found an apparent trade-off between having both hydraulic specific conductivity and stem water storage, and vulnerability to cavitation.  相似文献   

3.
Water flowing through the xylem from the roots to the leaves of most plants must pass through junctions where branches have developed from the main stem. These junctions have been studied as both flow constrictions and components of a hydraulic segmentation mechanism to protect the main axes of the plant. The hydraulic nature of the branch junction also affects the degree to which branches interact and can respond to changes in flow to other branches. The junctions from shoots of two conifer species were studied, with particular emphasis on the coupling between the downstream branches. Flow was observed qualitatively by forcing stain through the junctions and the resulting patterns showed that flow into a branch was confined to just part of the subtending xylem until a considerable distance below the junction. Junctions were studied quantitatively by measuring flow rates in a branch before and after flow was stopped in an adjacent branch and by measuring the hydraulic resistance of the components of the junction. Following flow stoppage in the adjacent branch, flow into the remaining branch increased, but considerably less than predicted based on a simple resistance analogue for the branch junction that assumes the two branches are fully coupled. The branches downstream from a junction, therefore, appear to be limited in their interconnectedness and hence in their ability to interact.  相似文献   

4.
Cytokinin content in xylem sap was higher in plants grown under local supply of fertilizers as compared to those grown under homogenous distribution of nutrients in soil. The separate assay of cytokinins in xylem exudate from split root system showed that roots, which were in contact with fertilizer mainly contributed to cytokinins transported from roots to shoots. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The phloem sap of Ricinus seedlings was analyzed for cytokinins and the concentration was compared with that in cotyledons and xylem sap. The dominant cytokinin in the phloem sap was isopentenyladenine (70 nM) when the endosperm was attached to the cotyledons; zeatin, dihydrozeatin and cytokinin-ribosides were present at relatively low concentrations (1–2 nM). Removal of the endosperm and incubation of the cotyledons in buffer led to a sharp decrease in the level of isopentenyladenine in the phloem sap, down to the value for zeatin, namely 1–2 nM. Similar low cytokinin concentrations were found in the xylem sap, too, whereas in the cotyledons the cytokinin content was at least 10-fold higher. Incubation of the cotyledons with various cytokinins (isopentenyladenine, zeatin and their ribosides) led to an increase of each of the applied cytokinins in the phloem sap, including also the metabolically closely related cytokinins. Zeatin was especially well loaded. It is concluded that the phloem translocates most free bases and ribosides of the various cytokinin species, if they are offered to the phloem. The data also show that the cytokinin levels in the phloem, which may be far higher than in the xylem, are subject to strong fluctuations depending on the physiological situation.This work was supported by the Deutsche Forschungsgemeinschaft (SFB 137). The experimental assistance by P. Geigenberger and the help in cytokinin analysis by Dr. A. Fußeder, Dr. B. Wagner, W. Peters (all Bayreuth) and by Prof. E. Weiler (Bochum) is gratefully acknowledged. Also the constructive discussions with Profs. E. Weiler (Bochum) and E. Beck (Bayreuth) are much appreciated.  相似文献   

6.
7.
Hydraulic redistribution (HR), the passive movement of water via roots from moist to drier portions of the soil, occurs in many ecosystems, influencing both plant and ecosystem-water use. We examined the effects of HR on root hydraulic functioning during drought in young and old-growth Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] and ponderosa pine (Pinus ponderosa Dougl. Ex Laws) trees growing in four sites. During the 2002 growing season, in situ xylem embolism, water deficit and xylem vulnerability to embolism were measured on medium roots (2–4-mm diameter) collected at 20–30 cm depth. Soil water content and water potentials were monitored concurrently to determine the extent of HR. Additionally, the water potential and stomatal conductance (gs) of upper canopy leaves were measured throughout the growing season. In the site with young Douglas-fir trees, root embolism increased from 20 to 55 percent loss of conductivity (PLC) as the dry season progressed. In young ponderosa pine, root embolism increased from 45 to 75 PLC. In contrast, roots of old-growth Douglas-fir and ponderosa pine trees never experienced more than 30 and 40 PLC, respectively. HR kept soil water potential at 20–30 cm depth above –0.5 MPa in the old-growth Douglas-fir site and –1.8 MPa in the old-growth ponderosa pine site, which significantly reduced loss of shallow root function. In the young ponderosa pine stand, where little HR occurred, the water potential in the upper soil layers fell to about –2.8 MPa, which severely impaired root functioning and limited recovery when the fall rains returned. In both species, daily maximum gs decreased linearly with increasing root PLC, suggesting that root xylem embolism acted in concert with stomata to limit water loss, thereby maintaining minimum leaf water potential above critical values. HR appears to be an important mechanism for maintaining shallow root function during drought and preventing total stomatal closure.  相似文献   

8.
The cytokinins 6-benzylaminopurine, 6-furfurylaminopurine and 6-(3-methyl-2-butenylamino) purine, were attached to starch and to cellulose by means of a carbamatic bond. The modified polysaccharides contained about one cytokinin molecule per 50 glucose units. The rate of release of the cytokinins was followed spectrophotometrically in aqueous solutions at different pHs. A good agreement with a first order model was found and the kinetic constants for the various systems were determined. The clear dependence on the pH of the medium supports a mechanism in which hydrolysis of the carbamatic bond is the rate determining step. The hormonal activity of the modified polymers was determined in the soybean callus bioassay and compared with the activities of non-bonded cytokinins. While high concentrations of free hormones cause inhibition of growth, such concentrations of bound hormone did not show inhibition.  相似文献   

9.
Leaf senescence varies greatly among cotton cultivars, possiblydue to their root characteristics, particularly the root-sourcedcytokinins and abscisic acid (ABA). Early-senescence (K1) andlate-senescence (K2) lines, were reciprocally or self-graftedto examine the effects of rootstock on leaf senescence and endogenoushormones in both leaves and xylem sap. The results indicatethat the graft of K1 scion onto K2 rootstock (K1/K2) alleviatedleaf senescence with enhanced photosynthetic (Pn) rate, increasedlevels of chlorophyll (Chl) and total soluble protein (TSP),concurrently with reduced malondialdehyde (MDA) contents inthe fourth leaf on the main-stem. The graft of K2 scion ontoK1 rootstock enhanced leaf senescence with reduced Pn, Chl,and TSP, and increased MDA, compared with their respective self-graftedcontrol plants (K1/K1 and K2/K2). Reciprocally grafted plantsdiffered significantly from their self-grafted control plantsin levels of zeatin and its riboside (Z+ZR), isopentenyl andits adenine (iP+iPA), and ABA, but not in those of dihydrozeatinand its riboside (DHZ+DHZR) in leaves in late season, whichwas consistent with variations in leaf senescence between reciprocallyand self-grafted plants. The results suggest that leaf senescenceis closely associated with reduced accumulation of Z+ZR, andiP+iPA rather than DHZ+DHZR, or enhanced ABA in leaves of cotton.Genotypic variation in leaf senescence may result from the differencein root characteristics, particularly in Z+ZR, iP+iPA, and ABAwhich are regulated by the root system directly or indirectly. Key words: Abscisic acid, cotton, cytokinins, grafting, leaf senescence Received 23 October 2007; Revised 17 January 2008 Accepted 23 January 2008  相似文献   

10.
Several cultures producing extracellular cytokinins were found. The physico-chemical properties of purine compounds isolated from the cultural broth of Pseudomonas stutzeri 136 were studied by chromatography on a Sephadex LH-20 column and by thin-layer chromatography on Silufol plates as well as by UV spectrometry. The cytokinin activity of the purine compounds was examined in specific biotests. P. stutzeri was shown to form and release an active cytokinin compound different in its properties from all of the known cytokinins.  相似文献   

11.
We measured the level of xylem-derived cytokinins (CKs) entering a cotton leaf, and the CK levels in the same leaf, thus enabling xylem sap and foliar CKs to be compared concurrently. Although zeatin was the dominant CK in xylem sap, zeatin, dihydrozeatin, and N(6)-(2-isopentenyl) adenine were present in approximately equimolar levels in leaves. Elevated [CO(2)] (EC) has an effect on the levels of cytokinins in sap and leaf tissues. This effect was modulated by the two levels of root nitrogen nutrition (2 and 12 mM nitrate). Growth enhancement (70%) in EC over plants in ambient [CO(2)] (AC) was observed for both nitrogen nutrition treatments. Low-nitrogen leaves growing in EC exhibited photosynthetic acclimation, whereas there was no sign of photosynthetic acclimation in high-nitrogen grown leaves. Under these prevailing conditions, xylem sap and leaf tissues were obtained for CK analysis. Higher nitrogen nutrition increased the delivery per unit leaf area of CKs to the leaf at AC. EC caused a greater increase in CK delivery to the leaf at low nitrogen conditions (106%) than at high nitrogen conditions (17%). EC induced a significant increase in CK content in low-nitrogen leaves, whereas CK content in leaf tissues was similar for high-nitrogen leaves growing in AC and EC.  相似文献   

12.
The air-seeding hypothesis predicts that xylem embolism resistance is linked directly to bordered pit functioning. We tested this prediction in trunks, roots, and branches at different vertical and radial locations in young and old trees of Pseudotsuga menziesii. Dimensions of bordered pits were measured from light and scanning electron micrographs, and physiological data were from published values. Consistent with observations, calculations showed that earlywood tracheids were more resistant to embolism than latewood tracheids, mainly from earlywood having stretchier pit membranes that can distend and cover the pit aperture. Air seeding that occurs in earlywood appears to happen through gaps between the torus edge and pit border, as shown by the similar calculated pressures required to stretch the membrane over the pit aperture and to cause embolism. Although bordered pit functioning was correlated with tracheid hydraulic diameter, pit pore size and above all pit aperture constrained conductivity the most. From roots to branches and from the trunk base to higher on the trunk, hydraulic resistance of the earlywood pit membrane increased significantly because of a decrease in the size of the pit aperture and size and number of margo pores. Moreover, overall wood conductivity decreased, in part due to lower pit conductivity and a decrease in size and frequency of pits. Structural and functional constraints leading to the trade-off of efficiency against safety of water transport were also demonstrated at the individual pit level, with a positive correlation between pit membrane resistance on an area basis and the pressure differential required to cause membrane stretching, a characteristic that is essential for pit aspiration.  相似文献   

13.
Biosynthesis of cytokinins   总被引:10,自引:0,他引:10  
Cytokinins are adenine derivatives with an isoprenoid side chain and play an essential role in plant development. Plant isopentenyltransferases that catalyze the first and rate-limiting steps of cytokinin biosynthesis have recently been identified. Unlike bacterial enzymes, which catalyze the transfer of the isopentenyl moiety from dimethylallyldiphosphate (DMAPP) to the N 6 position of adenosine 5′-monophosphate (AMP), plant enzymes catalyze the transfer of the isopentenyl moiety from DMAPP preferentially to ATP and to ADP. The isopentenylated side chain is hydroxylated to form zeatin-type cytokinins. An alternative pathway, in which a hydroxylated side chain is directly added to the N 6 position of the adenine moiety, has also been suggested.  相似文献   

14.
Decreased cytokinin (CK) export from roots in drying soil might provide a root-to-shoot signal impacting on shoot physiology. Although several studies show that soil drying decreases the CK concentration of xylem sap collected from the roots, it is not known whether this alters xylem CK concentration ([CK(xyl)]) in the leaves and bulk leaf CK concentration. Tomato (Solanum lycopersicum L.) plants were grown with roots split between two soil columns. During experiments, water was applied to both columns (well-watered; WW) or one (partial rootzone drying; PRD) column. Irrigation of WW plants aimed to replace transpirational losses every day, while PRD plants received half this amount. Xylem sap was collected by pressurizing detached leaves using a Scholander pressure chamber, and zeatin-type CKs were immunoassayed using specific antibodies raised against zeatin riboside after separating their different forms (free zeatin, its riboside, and nucleotide) by thin-layer chromatography. PRD decreased the whole plant transpiration rate by 22% and leaf water potential by 0.08 MPa, and increased xylem abscisic acid (ABA) concentration 2.5-fold. Although PRD caused no detectable change in [CK(xyl)], it decreased the CK concentration of fully expanded leaves by 46%. That [CK(xyl)] was maintained and not increased while transpiration decreased suggests that loading of CK into the xylem was also decreased as the soil dried. That leaf CK concentration did not decline proportionally with CK delivery suggests that other mechanisms such as CK metabolism influence leaf CK status of PRD plants. The causes and consequences of decreased shoot CK status are discussed.  相似文献   

15.
16.
Predicting root biomass from branching patterns of Douglas-fir root systems   总被引:2,自引:0,他引:2  
There are many examples of branching networks in nature, such as tree crowns, river systems, arteries and lungs. These networks have often been described as being self-similar, or following scale-invariant branching rules, and this property has been used to derive several scaling laws. In this paper we model root systems of Douglas-fir ( Pseudotsuga menziesii var. glauca (Beissn.) Franco) as branching networks following several simple branching rules. Our objective is to establish a relationship between trunk diameter and root biomass. We explore the effect of the self-similar branching assumption on this relationship. Using data collected from a mature stand in British Columbia, we find that branching asymmetry and the rate of root taper change with root size, thereby violating the assumption of self-similarity. However, the data are in general agreement with Leonardo da Vinci's area-preserving branching hypothesis. We use the field data to parameterize two models, one assuming self-similar branching and a second incorporating the measured size dependencies of branching parameters. The two models differ by only a small amount (≈8%) in their predictions. For both models, the predicted relationship between trunk diameter and root biomass is in good concordance with previously published empirical data. We conclude that the assumption of self-similar branching, although violated by the data, nevertheless provides a useful tool for predicting the allometric relationship between trunk diameter and root biomass. Finally, we use our models to show that the geometric properties of individual bifurcations fundamentally change the root biomass cost of different root topologies.  相似文献   

17.
This study was conducted lo determine whether naturally occurring xylem cytokinins, when supplied to leaves via the xylem at approximately endogenous concentrations, increase transpiration and delay senescence in selected monocot species (oat and wheat). The concentrations of some of the major cytokinins (zeatin, dihydrozeatin, ciszeatin and their ribosides, the O-glucosides and nucleotides) were determined in the xylem exudate of oat and wheat seedlings by radioimmunoassay. Evidence is presented that the small volume of exudate (4–5 mm3) collected per plant was xylem sap in transit at the time of shoot excision. Using the data on cytokinin levels, the individual bases and ribosides (and a base/riboside mixture), at multiples of concentrations determined in xylem sap, were tested in transpiration and senescence bioassays. The individual O-glucosides (and mixtures of the O-glucosides) were similarly tested at (i) multiples of the molar concentrations of the corresponding bases and ribosides, and/or at (ii) multiples of the endogenous concentrations. Similarly, zeatin and dihydrozeatin nucleotides were tested at multiples of the molar concentration of zeatin riboside and, in some instances, at multiples of endogenous concentrations. Our results suggest that, at least in oat and possibly in wheat, zeatin-type bases, ribosides and O-glucosides supplied to the leaf in xylem sap are likely to play a role in regulating transpiration in vivo. O-glucosides in oat xylem sap may be important regulators of leaf senescence in the intact plant. The nucleotides were present in xylem sap at lower concentrations than most of the bases, ribosides and O-glucosides. The nucleotides appear likely to play a lesser role than the bases, riboside and O-glucosidcs in controlling transpiration and senescence in the intact plant.  相似文献   

18.
Rachides of Juglans regia L. (Juglandaceae) and one‐year‐old twigs of Evonymus latifolia (L.) Mill. (Celastraceae) were cooled in air to ?25 °C, with an ultrasound detector attached to the xylem where peripheral tissues had been peeled off. Ultrasound acoustic emissions started between ?4·5 and ?14·3 °C, as measured with a thermocouple inserted into the xylem. The number of emissions was significantly lower from saturated plant parts than from those frozen at field water potentials. Bench‐drying of saturated samples produced significantly less signals than the freezing protocols. These findings are in accordance with the hypothesis that freezing of xylem under tension induces cavitation events. They corroborate earlier work which tried to provide a logical explanation for the seemingly paradoxical cryo‐scanning electron microscope observations of changing vessel contents during a daycourse in the field.  相似文献   

19.

Background  

Substance transport in higher land plants is mediated by vascular bundles, consisting of phloem and xylem strands that interconnect all plant organs.  相似文献   

20.
Structure-activity relationships of cytokinins, which regulate many aspects of plant growth, have been reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号