首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Placing light-grown Lemna gibba L. G-3 into the dark results in a changed pattern of protein synthesis. Although the amount of protein in the tissue and the over-all rate of incorporation of [35S]methionine into protein does not significantly decline during four days of darkness, the rate of synthesis of three polypeptides declines dramatically. One of these polypeptides is the chlorophyll a/b-binding protein and the two others are the large and small subunits of ribulose-1,5-bisphosphate carboxylase. The changed rates of synthesis of the two subunits were examined after transitions of plants from light to dark and dark to light. The in vivo synthesis of both subunits, while declining to a low level during four days of darkness, increases rapidly upon returning the plants to white light. In addition, the level of poly(A) mRNA coding for the precursor polypeptide of the small subunit of the enzyme falls to a low level in the dark and increases rapidly in response to white light. The increase in translatable mRNA for the small subunit is rapid enough to account for a major part of the increased synthesis of this subunit.  相似文献   

2.
J. P. Slovin  E. M. Tobin 《Planta》1982,154(5):465-472
Lemna gibba L. G-3 plants grown heterotrophically in the dark with intermittent red light (2 min every 8 h) contain a substantial amount of translatable mRNA encoding the light-harvesting chlorophyll (Chl)a/b-protein. However, very little [35S]methionine is incorporated into the apoproteins during a 1-h labeling period in the dark in these plants compared to plants grown in continuous white light. The Chla/b-protein mRNA is found to be associated with functioning polysomes in plants grown in the dark with intermittent red illumination (R plants). The small amounts of the apoproteins which are synthesized by these plants are found in the membrane fraction; neither the mature apoproteins nor their precursor(s) can be detected immunologically in the soluble fraction. The protein does not accumulate in these plants. Pulse-chase experiments with the R plants demonstrate that the newly synthesized apoproteins have a half-life of about 10 h in the dark. This turnover is not sufficient to explain the observed 20-fold difference in [35S]methionine incorporation into the apoprotein between white-light-grown and R plants. We therefore suggest that the synthesis of the Chla/b-apoproteins can be regulated by a light-dependent step at the level of translation, and that this regulation occurs after the initiation of translation.Abbreviations Chl chlorophyll - W Lemna plants grown in continuous white light - R plants grown heterotrophically in the dark with intermittent red light (2 min/8 h)  相似文献   

3.
4.
5.
Distribution of the major light-harvesting chlorophyll a/b-protein (LHCII) and its mRNA within bundle sheath and mesophyll cells of maize (Zea mays L.) was studied using in situ immunolocalization and hybridization, respectively. In situ hybridization with specific LHCII RNA probes from maize and Lemna gibba definitively shows the presence of high levels of mRNA for LHCII in both bundle sheath cells and mesophyll cells. In situ immuno-localization studies, using an LHCII monoclonal antibody, demonstrate the presence of LHCII polypeptides in chloroplasts of both cell types. The polypeptide composition of LHCII and the amount of LHCII in bundle sheath cells are different from those in mesophyll cells. Both mesophyll and bundle sheath chloroplasts can take up, import and process the in vitro transcribed and translated LHCII precursor protein from L. gibba. Although bundle sheath chloroplasts incorporate LHCII into the pigmented light-harvesting complex, the efficiency is lower than that in mesophyll chloroplasts.  相似文献   

6.
Chlorophyll b was first detectable after 10 minutes of illumination of etiolated pea seedlings (Pisum sativum L. var Greenfeast) with continuous white light. The chlorophyll a/b ratio decreased from 300 at 10 minutes to 15 after 1 hour. There was little change in the chlorophyll a/b ratio between 1 and 2 hours, and it declined to 3 between 2 and 5 hours of illumination. In red light, the time courses of total chlorophyll synthesis and chlorophyll a/b ratio were similar to those in white light for the first 5 hours of illumination. But with increasing time of illumination with red light, there was an increase in the chlorophyll a/b ratio to 7 after 30 hours. Illumination with white light of very low intensity also gave high chlorophyll a/b ratios. Seedlings which had been illuminated for varying periods and then returned to darkness always showed an increase in chlorophyll a/b ratio during the dark period. It is concluded that the synthesis of chlorophyll b is controlled by light.  相似文献   

7.
It was shown earlier that in etiolated bean (Phaseolus vulgaris, var. red kidney) leaves exposed to continuous light for a short time and then transferred to darkness a reorganization of their photosystem II (PSII) unit components occurs. This reorganization involves disorganization of the light-harvesting complex of PSII (LHC-II), destruction of its chlorophyll b and the 25 kilodalton polypeptide, and reuse of its chlorophyll a for the formation of additional, small in size, PSII units (Argyroudi-Akoyunoglou, Akoyunoglou, Kalosakas, Akoyunoglou 1982 Plant Physiol 70: 1242-1248). The present study further shows that parallel to the PSII unit reorganization a reorganization of the PSI unit components also occurs: upon transfer to darkness the 24, 23, and 21 kilodalton polypeptides, components of the light-harvesting complex of PSI (LHC-I), are decreased, the 69 kilodalton polypeptide, component of the chlorophyll a-rich P700-protein complex (CPI), is increased and new smallsized PSI units are formed. Concomitantly, the cytochrome f/chlorophyll and the cytochrome b/chlorophyll ratios are gradually increased. This suggests that the concentration of the electron transport components is also modulated in darkness to allow for adequate electron flow to occur between the newly synthesized PSII and PSI units.  相似文献   

8.
During the illumination of dark-grown barley plants light induces a rapid decrease of a translatable mRNA which codes for a polypeptide of Mr 44000. This component was identified as a precursor of the NADPH:protochlorophyllide oxidoreductase. The precursor has an Mr larger than the authentic protein by approximately 8000. The light-induced change in the level of translatable mRNA can be induced by a 15-s red-light pulse followed by 5 h of darkness. The red-light effect is reversed by a subsequent far-red-light treatment. It is concluded that the light-induced decline of translatable mRNA for the NADPH:protochlorophyllide oxidoreductase is controlled by phytochrome. The significance of this finding for present concepts of light-dependent control of chloroplast development and chlorophyll synthesis is discussed.  相似文献   

9.
10.
The genetic locus for the high chlorophyll fluorescent photosystem II-deficient maize mutant hcf*-3 has been definitively located to the nuclear genome. Fluorography of lamellar polypeptides labeled with [35S]methionine in vivo revealed the specific loss of a heavily labeled 32,000 dalton thylakoid membrane polypeptide as well as its chloroplast encoded precursor species at 34,000 daltons. Examination of freeze-fractured mesophyll and bundle sheath thylakoids from hcf*-3 revealed that both plastid types lacked the large EFs particles believed to consist of the photosystem II reaction center-core complex and associated light harvesting chlorophyll-proteins. The present evidence suggests that the synthesis or turnover/integration of the chloroplast-encoded 34,000 to 32,000 dalton polypeptide is under nuclear control, and that these polyipeptides are integral components of photosystem II which may be required for the assembly or structural stabilization of newly formed photosystem II reaction centers in both mesophyll and bundle sheath chloroplasts.  相似文献   

11.
Janet P. Slovin  Elaine M. Tobin 《BBA》1981,637(1):177-184
Glyphosine (N,N-bis(phosphonomethyl)glycine) is known to increase sucrose levels in sugarcane and to cause chlorosis in maize and other plants. It has been suggested (Crofts, S.M., Arntzen, C.J., Vanderhoef, L.N. and Zettinger, C.S. (1974) Biochim. Biophys. Acta 335, 211–217) that its primary mode of action is to inhibit the synthesis of plastid rRNA. Growth of Lemna gibba L. G-3 on 5 · 10?4M glyphosine causes the plants to produce fronds lacking chlorophyll. The plastids in these white fronds contain only a few internal membrane structures, some of which are stacked. Sodium dodecyl sulfate polyacrylamide gel electrophoresis shows an accumulation of substantial amounts of both the large and small subunits of ribulosebisphosphate carboxylase by the white fronds. The membrane fraction from these fronds contains only traces of the light-harvesting chlorophyll ab apoprotein in comparison to control plants. In vivo labeling and immunoprecipitation show that the large subunit of ribulose-bisphosphate carboxylase is actively synthesized by the white fronds. However, labeling of the chlorophyll ab apoprotein and a 32000 dalton protein in the membrane fraction is extremely low compared to control plants. We conclude that in Lemna, glyphosine differentially affects the synthesis and/or processing of soluble proteins and some membrane chloroplast proteins, and could be useful in understanding the biogenesis of chloroplast membranes.  相似文献   

12.
The light-harvesting chlorophyll ab-protein complex has been isolated from barley thylakoids by a rapid, single-step procedure involving adsorption chromatography on controlled-pore glass columns. The Triton X-100-solubilized complex contains a polypeptide of apparent molecular weight, 26,000; the 0.25% Triton X-100 light-harvesting chlorophyll ab-protein has spectral characteristics consistent with its assumed in vivo state. On the same column free chlorophyll and carotenoids have been separated from chlorophyll-protein complex 1, but this complex contained many polypeptides other than those associated with chlorophyll. This method is potentially suitable for the isolation of other thylakoid membrane proteins. It may also be generally applicable for fractionation of intrinsic membrane proteins from other sources and for separation of mixed Triton X-100-lipid micelles.  相似文献   

13.
The molecular organization of chlorophyll in Chlamydomonas reinhardii has been shown to be essentially similar to that in higher plants. Some 50% of the chlorophyll in Chlamydomonas reinhardii chloroplast membranes has been shown to be located in a chlorophyll a/b-protein complex. The complex was isolated in a homogeneous form by hydroxylapatite chromatography of sodium dodecyl sulfate extracts of the chloroplast membranes. Its absorption spectrum exhibits two maxima in the red region at 670 and 652 nm due to the presence of equimolar quantities of chlorophylls a and b in the complex. Preparations of the chlorophyll-protein also contain some of each of the carotenoids observed in the intact chloroplast membrane, but not in the same proportions. The native complex (S value = 2.3S) exhibits a molecular weight of 28,000 ± 2,000 on calibrated sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, on the basis of its amino acid composition and other data a more probable molecular weight of about 35,000 was calculated. Each 35,000 dalton unit contains three chlorophyll a and three chlorophyll b molecules, and on the average one carotenoid molecule conjugated with probably a single polypeptide of 29,000 daltons. Comparison of spectral and biochemical characteristics demonstrates that this algal chlorophyll-protein is homologous to the previously described major light-harvesting chlorophyll a/b-protein of higher plants. It is anticipated that the Chlamydomonas complex functions solely in a light-harvesting capacity in analogy to the function determined for the higher plant component.  相似文献   

14.
15.
Isolation and translation of plant messenger RNA   总被引:3,自引:2,他引:1       下载免费PDF全文
A fraction of the RNA species isolated from Lemna gibba G-3 consists of molecules with attached sequences of polyadenylic acid. This polyadenylic acid-containing fraction, separated from total RNA by adsorption onto oligothymidylic acid-cellulose, was shown to be mRNA by its ability to serve as template in a cell-free translation system derived from wheat germ. The products of translation were characterized by electrophoresis. This method permitted the comparison of mRNA from plants grown under different light conditions. Such plants were shown to possess qualitative and quantitative differences in their mRNA complements.  相似文献   

16.
R. Oelmüller  C. Schuster 《Planta》1987,172(1):60-70
The amount of in-vitro translatable mRNA of the light-harvesting chlorophyll a/b-binding protein (LHCP) of photosystem II strongly increases in darkness (D) after a 5-min red-light pulse while continuous illumination of mustard seedlings with far-red (FR), red or white light leads only to a slight increase in the amount of translatable LHCP-mRNA. No increase can be observed after a long-wavelength FR (RG9-light) pulse. However, a FR pretreatment prior to the RG9-light pulse strongly increase LHCP-mRNA accumulation in subsequent D. This is not observed in the case of the mRNA for the small subunit of ribulose-1.5-bisphosphate carboxylase. The increase of LHCP-mRNA in D after a FR pretreatment can be inhibited by a reillumination of the seedlings with FR. The inhibition of LHCP-mRNA accumulation during continuous illumination with FR and the strong increase in D following a FR illumination was found to be independent of chlorophyll biosynthesis since no correlation between chlorophyll biosynthesis and translatable LHCP-mRNA levels could be detected. Even strong changes in the amount of intermediates of chlorophyll biosynthesis caused by application of levulinic acid or 5-aminolevulinic acid did not affect LHCP-mRNA levels. Therefore, we conclude that the appearance of LHCP-mRNA is inhibited during continuous illumination, even though illumination leads to a storage of a light singal which promotes accumulation of translatable LHCP-mRNA in D.Abbreviations c continuous - Chl chlorophyll - D darkness - FR far-red light (3.5 W·m-2) - LHCP light-harvesting chlorophyll a/b-binding protein of photosystem II - NF Norfluration - PChl protochlorophyll(ide) - Pfr far-red absorbing form of phytochrome - Ptot total phytochrome - R red light (6.8 W·m-2) - RG9-light long-wavelength FR (10 W·m-2) - SSU small subunit of ribulose-1.5-bisphosphate carboxylase - WL white light - () Pfr/Ptot=wavelength-dependent photoequilibrium of the phytochrome system  相似文献   

17.
The light-harvesting chlorophyll protein system of the alga Chlamydobotrys stellata consists of an as yet uncharacterized algal chlorophyll a-protein, called LHCPa, and a common photosystem II-related chlorophyll a/b-protein, called LHCPb (Brandt, Kaiser-Jarry, Wiessner 1982 Biochim Biophys Acta 679: 404-409). For further characterization, this LHCPa was isolated from the organism by polyacrylamide isoelectrofocusing and reelectrophoresis. It contains only chlorophyll a and has only one apoprotein (32,000 daltons). When separated from autotrophically grown cells, its absorption peak is at 674 nm and its isoelectric point at 5.3. Photoheterotrophic cultivation of the algae shifts the absorption maximum of LHCPa to 679 nm and its isoelectric point to 4.8. This LHCPa is a component of photosystem I particles. In relation to the total chlorophyll a content, the amount of LHCPa is low in autotrophic algae, but increases under photoheterotrophic growth conditions, where the organisms do not have the ability to assimilate CO2 photosynthetically.  相似文献   

18.
19.
The light-harvesting chlorophyll a/b-protein complex of photosystem II (LHCII) is the most abundant membrane protein in green plants, and its degradation is a crucial process for the acclimation to high light conditions and for the recovery of nitrogen (N) and carbon (C) during senescence. However, the molecular mechanism of LHCII degradation is largely unknown. Here, we report that chlorophyll b reductase, which catalyzes the first step of chlorophyll b degradation, plays a central role in LHCII degradation. When the genes for chlorophyll b reductases NOL and NYC1 were disrupted in Arabidopsis thaliana, chlorophyll b and LHCII were not degraded during senescence, whereas other pigment complexes completely disappeared. When purified trimeric LHCII was incubated with recombinant chlorophyll b reductase (NOL), expressed in Escherichia coli, the chlorophyll b in LHCII was converted to 7-hydroxymethyl chlorophyll a. Accompanying this conversion, chlorophylls were released from LHCII apoproteins until all the chlorophyll molecules in LHCII dissociated from the complexes. Chlorophyll-depleted LHCII apoproteins did not dissociate into monomeric forms but remained in the trimeric form. Based on these results, we propose the novel hypothesis that chlorophyll b reductase catalyzes the initial step of LHCII degradation, and that trimeric LHCII is a substrate of LHCII degradation.  相似文献   

20.
A brief pulse of red light accelerates chlorophyll accumulation upon subsequent transfer of dark-grown tomato (Lycopersicon esculentum) seedlings to continuous white light. Such potentiation of greening was compared in wild type and an aurea mutant W616. This mutant has been the subject of recent studies of phytochrome phototransduction; its dark-grown seedlings are deficient in phytochrome, and light-grown plants have yellow-green leaves. The rate of greening was slower in the mutant, but the extent (relative to the dark control) of potentiation by the red pulse was similar to that in the wild type. In the wild type, the fluence-response curve for potentiation of greening indicates substantial components in the VLF (very low fluence) and LF (low fluence) ranges. Far-red light could only partially reverse the effect of red. In the aurea mutant, only red light in the LF range was effective, and the effect of red was completely reversed by far-red light. When grown in total darkness, aurea seedlings are also deficient in photoconvertible PChl(ide). Upon transfer to white light, the aurea mutant was defective in both the abundance and light regulation of the light-harvesting chlorophyll a/b binding polypeptide(s) [LHC(II)]. The results are consistent with the VLF response in greening being mediated by phytochrome. Furthermore, the data support the hypothesis that light modulates LHC(II) levels through its control of the synthesis of both chlorophyll and its LHC(II) apoproteins. Some, but not all, aspects of the aurea phenotype can be accounted for by the deficiency in photoreception by phytochrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号