首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that the orfE gene of Escherichia coli encodes RNase PH. Here we show that the OrfE protein (purified as described in the accompanying paper) (Jensen, K. F., Andersen, J. T., and Poulsen, P. (1992) J. Biol. Chem. 267, 17147-17152) has both the degradative and synthetic activities of RNase PH. This highly purified protein was used to characterize the enzymatic and structural properties of RNase PH. The enzyme requires a divalent cation and phosphate for activity, the latter property indicating that RNase PH is exclusively a phosphorolytic enzyme. Among tRNA-type substrates, the enzyme is most active against synthetic tRNA precursors containing extra residues following the -CCA sequence, and it can act on these molecules to generate mature tRNA with amino acid acceptor activity; 3'-phosphoryl-terminated molecules are not active as substrates. The equilibrium constant for RNase PH is near unity, suggesting that at the phosphate concentration present in vivo, the enzyme would participate in RNA degradation. The synthetic reaction of RNase PH displays a nonlinear response to increasing enzyme concentrations, and this may be due to self-aggregation of the protein. Higher order multimers of RNase PH could be detected by gel filtration at higher protein concentrations and by protein cross-linking. The possible role of RNase PH in tRNA processing is discussed.  相似文献   

2.
1. A precursor to small stable RNA, 10Sa RNA, accumulates in large amounts in a temperature sensitive RNase E mutant at non-permissive temperatures, and somewhat in an rnc (RNase III-) mutant, but not in an RNase P- mutant (rnp) or wild type E. coli cells. 2. Since p10Sa RNA was not processed by purified RNase E and III in customary assay conditions, we purified p10Sa RNA processing activity about 700-fold from wild type E. coli cells. 3. Processing of p10Sa RNA by this enzyme shows an absolute requirement for a divalent cation with a strong preference for Mn2+ over Mg2+. Other divalent cations could not replace Mn2+. 4. Monovalent cations (NH+4, Na+, K+) at a concentration of 20 mM stimulated the processing of p10Sa RNA and a temperature of 37 degrees C and pH range of 6.8-8.2 were found to be optimal. 5. The enzyme retained half of its p10Sa RNA processing activity after 30 min incubation at 50 degrees C. 6. Further characterization of this activity indicated that it is RNase III. 7. To further confirm that the p10Sa RNA processing activity is RNase III, we overexpressed the RNase III gene in an E. coli cells that lacks RNase III activity (rnc mutant) and RNase III was purified using one affinity column, agarose.poly(I).poly(C). 8. This RNase III preparation processed p10Sa RNA in a similar way as observed using the p10Sa RNA processing activity purified from wild type E. coli cells, confirming that the first step of p10Sa RNA processing is carried out by RNase III.  相似文献   

3.
RNase D is a 3'-exoribonuclease whose in vitro specificity has suggested that it is involved in the processing of tRNA precursors. Its in vivo role has remained unclear, however, because mutant cells devoid of the enzyme display no defect in growth or tRNA processing. To learn more about the structure and function of RNase D, we cloned the Escherichia coli rnd gene, which is thought to code for this enzyme. The rnd gene was isolated from a cosmid library based on elevated RNase D activity and was subcloned as a 1.4-kilobase-pair fragment in pUC18. Maxicell analysis of the cloned fragment revealed that a single protein of approximately 40 kilodaltons, which is the size of RNase D, was synthesized. The rnd gene is present as a single copy on the E. coli chromosome and is totally absent in a deletion mutant. Cells that harbored the cloned rnd gene displayed RNase D activity that was elevated as much as 20-fold over that of the wild type. As growth of the culture progressed, however, RNase D specific activity declined dramatically, together with a similar decrease in plasmid copy number. In contrast, no decrease in copy number was observed with an inactive rnd gene. Placement of the rnd gene downstream from the lac promoter led to inducible RNase D overexpression and concomitantly slowed cell growth. These findings support the idea that rnd is the structural gene for RNase D and indicate that elevated RNase D activity is deleterious to E. coli.  相似文献   

4.
In Escherichia coli, the exoribonuclease polynucleotide phosphorylase (PNPase), the endoribonuclease RNase E, a DEAD-RNA helicase and the glycolytic enzyme enolase are associated with a high molecular weight complex, the degradosome. This complex has an important role in processing and degradation of RNA. Chloroplasts contain an exoribonuclease homologous to E. coli PNPase. Size exclusion chromatography revealed that chloroplast PNPase elutes as a 580-600 kDa complex, suggesting that it can form an enzyme complex similar to the E. coli degradosome. Biochemical and mass-spectrometric analysis showed, however, that PNPase is the only protein associated with the 580-600 kDa complex. Similarly, a purified recombinant chloroplast PNPase also eluted as a 580-600 kDa complex after gel filtration chromatography. These results suggest that chloroplast PNPase exists as a homo-multimer complex. No other chloroplast proteins were found to associate with chloroplast PNPase during affinity chromatography. Database analysis of proteins homologous to E. coli RNase E revealed that chloroplast and cyanobacterial proteins lack the C-terminal domain of the E. coli protein that is involved in assembly of the degradosome. Together, our results suggest that PNPase does not form a degradosome-like complex in the chloroplast. Thus, RNA processing and degradation in this organelle differ in several respects from those in E. coli.  相似文献   

5.
A previously unreported endoribonuclease has been identified in Escherichia coli, which has a preference for hydrolysis of pyrimidine-adenosine (Pyd-Ado) bonds in RNA. It was purified about 7000-fold to give a single band after SDS/polyacrylamide gel electrophoresis; the eluted protein gave the same RNase specificity. The sizes of the native and denatured enzymes agreed suggesting that the enzyme exists as a monomer of approximately 26 kDa. It is called RNase M. The only other reported broadly specific endoribonuclease in E. coli is RNase I, a periplasmic enzyme. Based on differences in charge, heat stability and substrate specificity, it was clear that RNase M is not RNase I. The specificity of RNase M was remarkably similar to that of pancreatic RNase A even though the two enzymes differ in charge characteristics and size. Earlier studies had shown that mRNA from the lactose operon of E. coli is hydrolyzed in vivo primarily between Pyd-Ado bonds [Cannistraro et al. (1986) J. Mol. Biol. 192, 257-274] We propose that this major RNase activity accounts for these cleavages observed in vivo and that it is the endonuclease for mRNA degradation in E. coli.  相似文献   

6.
Purification and characterization of Escherichia coli RNase T   总被引:7,自引:0,他引:7  
RNase T, a nuclease thought to be involved in end-turnover of tRNA, has been purified about 4,000-fold from extracts of Escherichia coli. At this stage of purification, the enzyme was judged to be at least 95% pure based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native molecular weight of RNase T determined from gel filtration and sedimentation analyses is about 50,000, whereas the monomer molecular weight determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 25,000, suggesting that the protein is an alpha 2 dimer. Purified RNase T is extremely sensitive to inactivation by oxidation, sulfhydryl group reagents, and temperature. The ribonuclease activity against tRNA-C-C-[14C]A is optimal at pH 8-9 in the presence of 2-5 mM MgCl2 and ionic strengths of less than 50mM. Although RNase T is highly specific for intact tRNA-C-C-A as a substrate and can hydrolyze all species in a mixed population of tRNA, it is inhibited by other RNAs, such as poly(A), rRNA, 5 S RNA, and tRNA-C-C. RNase T is an exoribonuclease which initiates attack at a free 3' terminus of tRNA and releases AMP; aminoacyl-tRNA is not a substrate. The role of RNase T in the end-turnover of tRNA and its possible involvement in other aspects of RNA metabolism are discussed.  相似文献   

7.
T4 Species I RNA, a molecule 140 nucleotides in length with some structural features very much like a tRNA, is specifically cleaved by an enzymatic activity in Escherichia coli extracts to give three segments with 19, 48 and 73 nucleotides. We report the purification and characterization of the E. coli RNase which cleaves two 3' phosphodiester bonds of T4 Species I RNA. This reaction has many properties in common with those catalyzed by E. coli RNase III, although the optimal salt conditions for T4 Species I RNA cleavage differ significantly from those for other RNase III-catalyzed reactions. The reaction is not catalyzed by extracts from an E. coli strain lacking RNase III activity. Furthermore, T4 Species I RNA is cleaved by highly purified E. coli RNase III to yield the same three specific fragments. We conclude that this specific cleavage is due to the action of RNase III, and that the requirement for lower ionic strength may reveal further important properties about this RNA processing enzyme.  相似文献   

8.
Escherichia coli RNase HII is composed of 198 amino acid residues. The enzyme has been overproduced in an insoluble form, purified in a urea-denatured form, and refolded with poor yield [M. Itaya (1990) Proc. Natl. Acad. Sci. USA 87, 8587-8591]. To facilitate the preparation of the enzyme in an amount sufficient for physicochemical studies, we constructed an overproducing strain in which E. coli RNase HII is produced in a soluble form. The enzyme was purified from this strain and its biochemical and physicochemical properties were characterized. The good agreement in the molecular weights estimated from SDS-PAGE (23,000) and gel filtration (22,000) suggests that the enzyme acts as a monomer. From the far-UV circular dichroism spectrum, its helical content was calculated to be 23%. The enzyme showed Mn(2+)-dependent RNase H activity. Its specific activity determined using (3)H-labeled M13 RNA/DNA hybrid as a substrate was comparable to but slightly higher than that of the refolded enzyme, indicating that the enzyme overproduced and purified in a soluble form is more suitable for structural and functional analyses than the refolded enzyme.  相似文献   

9.
Partial purification of RNase P from Schizosaccharomyces pombe   总被引:13,自引:0,他引:13  
Ribonuclease P from the fission yeast Schizosaccharomyces pombe was partially purified using DEAE-cellulose and phosphocellulose column chromatography. The yeast RNase P enzyme cleaves Escherichia coli tRNATyr precursor to give tRNATyr containing its mature 5' end. The enzyme activity is inhibited after treatment with nucleases; this indicates the requirement of a nucleic acid component for activity. The enzyme purification was greatly facilitated by using a synthetically prepared radioactive ApApApCOH ligated to the 5'-terminal phosphate of E. coli tRNAfMet (ApApApCp-tRNA) substrate. (p denotes a [32P]phosphate group.) This substrate was cleaved by yeast RNase P to the mature tRNA and a tetranucleoside triphosphate ApApApCOH. The synthetic substrate allowed the utilization of a simple assay procedure measuring the trichloroacetic acid solubility of the ApApApC product, thus avoiding the more cumbersome gel electrophoric separation of reaction products.  相似文献   

10.
Transposon Tn10-mediated rearrangement was used to isolate a strain of Escherichia coli carrying a deletion in the rnd region which is known to encode the structural gene for the putative 3' tRNA processing nuclease, RNase D. Genetic analysis indicated that about 0.4-0.5 min of the chromosome in the 39.5-40.0 min region was deleted. The mutant strain was devoid of RNase D activity, but other RNase activities were unaffected. The viability of the mutant strain and its normal growth characteristics indicate that RNase D is not essential for E. coli survival. The normal plating efficiency in this mutant host of wild type T4 and a T4 psu1+-amber double mutant indicates that RNase D is also not required for T4 growth or psu1+-tRNA processing. The implications of these findings for the role of RNase D in bacterial and bacteriophage tRNA metabolism, and the possible involvement of alternative enzymes, are discussed.  相似文献   

11.
Endoribonuclease RNase E appears to control the rate-limiting step that mediates the degradation of many mRNA species in bacteria. In this work, an RNase E-like activity in Archaea is described. An endoribonucleolytic activity from the extreme halophile Haloarcula marismortui showed the same RNA substrate specificity as the Escherichia coli RNase E and cross-reacted with a monoclonal antibody raised against E. coli RNase E. The archaeal RNase E activity was partially purified from the extreme halophilic cells and shown, contrary to the E. coli enzyme, to require a high salt concentration for cleavage specificity and stability. These data indicate that a halophilic RNA processing enzyme can specifically recognize and cleave mRNA from E. coli in an extremely salty environment (3 M KCI). Having recently been shown in mammalian cells (A. Wennborg, B. Sohlberg, D. Angerer, G. Klein, and A. von Gabain, Proc. Natl. Acad. Sci. USA 92:7322-7326, 1995), RNase E-like activity has now been identified in all three evolutionary domains: Archaea, Bacteria, and Eukarya. This strongly suggests that mRNA decay mechanisms are highly conserved despite quite different environmental conditions.  相似文献   

12.
RNase M, an enzyme previously purified to homogeneity from Escherichia coli, was suggested to be the RNase responsible for mRNA degradation in this bacterium. Although related to the endoribonuclease, RNase I, its distinct properties led to the conclusion that RNase M was a second, low molecular mass, broad specificity endoribonuclease present in E. coli. However, based on sequence analysis, southern hybridization, and enzyme activity, we show that RNase M is, in fact, a multiply altered form of RNase I. In addition to three amino acid substitutions that confer the properties of RNase M on the mutated RNase I, the protein is synthesized from an rna gene that contains a UGA nonsense codon at position 5, apparently as a result of a low level of readthrough. We also suggest that RNase M is just one of several previously described endoribonuclease activities that are actually manifestations of RNase I.  相似文献   

13.
We have determined the nucleotide sequence of a 1.4-kb-pair fragment of the E. coli chromosome that carries the complete rnd gene encoding RNase D, a putative tRNA processing enzyme. The coding region of rnd extends for a total of 1128 nucleotides beginning at an initiator UUG codon and terminating at a UAA codon, and encodes a 375-amino acid polypeptide of 42,679 daltons, consistent with the known size of RNase D. A rapid purification procedure was developed for isolation of RNase D from strains overexpressing the enzyme. The N-terminal sequence and the amino acid composition of the homogenous protein were in excellent agreement with those derived from the sequence of the rnd gene.  相似文献   

14.
RNase BN, a tRNA-processing enzyme previously shown to be required for the 3'-maturation of certain bacteriophage T4-encoded tRNAs, was overexpressed and purified to near homogeneity from Escherichia coli. The purified enzyme, which is free of nucleic acid, is an alpha(2)-dimer with a molecular mass of approximately 65 kDa. RNase BN displays a number of unusual catalytic properties compared with the other exoribonucleases of E. coli. The enzyme is most active at pH 6.5 in the presence of Co(2+) and high concentrations of monovalent salts. It is highly specific for tRNA substrates containing an incorrect residue within the universal 3'-CCA sequence. Thus, tRNA-CU and tRNA-CA are effective substrates, whereas intact tRNA-CCA, elongated tRNA-CCA-Cn, phosphodiesterase-treated tRNA, and the closely related tRNA-CC are essentially inactive as substrates. RNA or DNA oligonucleotides also are not substrates. These data indicate that RNase BN has an extremely narrow substrate specificity. However, since tRNA molecules with incorrect residues within the -CCA sequence are not normally produced in E. coli, the role of RNase BN in uninfected cells remains to be determined.  相似文献   

15.
Escherichia coli RNase R, a 3' --> 5' exoribonuclease homologous to RNase II, was overexpressed and purified to near homogeneity in its native untagged form by a rapid procedure. The purified enzyme was free of nucleic acid. It migrated upon gel filtration chromatography as a monomer with an apparent molecular mass of approximately 95 kDa, in close agreement with its expected size based on the sequence of the rnr gene. RNase R was most active at pH 7.5-9.5 in the presence of 0.1-0.5 mm Mg(2+) and 50-500 mm KCl. The enzyme shares many catalytic properties with RNase II. Both enzymes are nonspecific processive ribonucleases that release 5'-nucleotide monophosphates and leave a short undigested oligonucleotide core. However, whereas RNase R shortens RNA processively to di- and trinucleotides, RNase II becomes more distributive when the length of the substrate reaches approximately 10 nucleotides, and it leaves an undigested core of 3-5 nucleotides. Both enzymes work on substrates with a 3'-phosphate group. RNase R and RNase II are most active on synthetic homopolymers such as poly(A), but their substrate specificities differ. RNase II is more active on poly(A), whereas RNase R is much more active on rRNAs. Neither RNase R nor RNase II can degrade a complete RNA-RNA or DNA-RNA hybrid or one with a 4-nucleotide 3'-RNA overhang. RNase R differs from RNase II in that it cannot digest DNA oligomers and is not inhibited by such molecules, suggesting that it does not bind DNA. Although the in vivo function of RNase R is not known, its ability to digest certain natural RNAs may explain why it is maintained in E. coli together with RNase II.  相似文献   

16.
A new ribonuclease has been isolated from Escherichia coli. The enzyme is present in the 100,000 times g supernatant fraction and has been purified over 200-fold. Studies of the enzyme reveal that: 1. The enzyme shows a marked preference for oligoribonucleotides; indeed, the reaction rate is inversely proportional to the chain length of the substrate. The enzyme does not attack polynucleotides even at high concentrations of enzyme and has no detectable DNase activity. 2. The enzyme is stimulated strongly by Mn2+, less strongly by Mg2+, and not at all by Ca2+ and monovalent cations. 3. The enzyme is purified free of RNase I, RNase II, RNase III, polynucleotide phosphorylase, and other known ribonucleases of E. coli. The enzyme displays identical properties when isolated from mutants of E. coli that are deficient in the above ribonucleases. 4. The enzyme has a marked thermostability, a point of further distinction from RNase II.  相似文献   

17.
H J Breter  B Schmidt  R K Zahn 《Enzyme》1975,19(3):149-153
A four-step procedure for purification of a nuclease from the keratinous sponge Verongia aerophoba is described. The extracted material is lyophilized, acidified, and subjected to chromatography on Sephadex, hydroxyapatite, and phosphocellulose. The nuclease is purified about 1,000-fold from the crude extract and approximately 1,600-fold from concomitant acid RNase. Phosphodiesterase is lost after chromatography on Sephadex. The purified enzyme solution contains one single activity as determined by polyacrylamide gel electrophoresis.  相似文献   

18.
韭菜线粒体锰超氧化物歧化酶纯化及性质研究   总被引:4,自引:0,他引:4  
经硫酸铵沉淀、DEAE-Sephacel层析和Sephadex G-200凝胶过滤,将韭菜线粒体SOD纯化到均一程度。从6000g韭菜叶片线粒体中纯化得到2.5mg酶,酶比活力达1200U/mg蛋白。该酶对KCN和H2O2都不敏感,热稳定性弱 外光区吸收峰在280nm,凝胶过滤法测得其分子量为8200D,SOS-PAGE法测定其亚基分子量的22000D,DNS法测得其N-末端氨基酸为缬氨酸。上述结  相似文献   

19.
Infection of a variety of E.coli strains with bacteriophage T4 leads to about a 25,000 dalton increase in the apparent molecular weight of RNase D based on gel filtration on Ultrogel AcA44. No alteration occurs when infection is carried out in the presence of chloramphenicol. The change in RNase D is substantially completed by 7.5 min of infection. Chromatography of the altered RNase D on the adsorbant, Affi-gel Blue, restores the enzyme to its original molecular weight of 40,000, indicating that the modification is reversible. Mixing an extract from infected cells with one from uninfected cells converts a portion of the uninfected cell enzyme to the higher molecular weight form. No conversion takes place if the infected cell extract is first treated with phenol to inactivate proteins. Preliminary analysis indicates that the factor in infected cell extracts responsible for the conversion is a heat-labile, relatively low-molecular weight protein, and that RNase D is modified by association with this phage-specific component. The potential role of RNase D in the 3′ processing of bacteriophage T4 tRNA precursors, and the involvement of a phage gene product in this process, are discussed.  相似文献   

20.
RNase PH is a Pi-dependent exoribonuclease that can act at the 3' terminus of tRNA precursors in vitro. To obtain information about the function of this enzyme in vivo, the Escherichia coli rph gene encoding RNase PH was interrupted with either a kanamycin resistance or a chloramphenicol resistance cassette and transferred to the chromosome of a variety of RNase-resistant strains. Inactivation of the chromosomal copy of rph eliminated RNase PH activity from extracts and also slowed the growth of many of the strains, particularly ones that already were deficient in RNase T or polynucleotide phosphorylase. Introduction of the rph mutation into a strain already lacking RNases I, II, D, BN, and T resulted in inviability. The rph mutation also had dramatic effects on tRNA metabolism. Using an in vivo suppressor assay we found that elimination of RNase PH greatly decreased the level of su3+ activity in cells deficient in certain of the other RNases. Moreover, in an in vitro tRNA processing system the defect caused by elimination of RNase PH was shown to be the accumulation of a precursor that contained 4-6 additional 3' nucleotides following the -CCA sequence. These data indicate that RNase PH can be an essential enzyme for the processing of tRNA precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号