共查询到20条相似文献,搜索用时 15 毫秒
1.
It has previously been demonstrated that the compound mimosine inhibits cell cycle traverse in late G1 phase prior to the onset of DNA synthesis (Hoffman BD, Hanauske-Abel HM, Flint A, Lalande M: Cytometry 12:26-32, 1991; Lalande M: Exp Cell Res 186:332-339, 1990). These results were obtained by using flow cytometric analysis of DNA content to compare the effects of mimosine on cell cycle traverse with those of aphidicolin, an inhibitor of DNA polymerase alpha activity. We have now measured the incorporation of bromodeoxyuridine into lymphoblastoid cells by flow cytometry to determine precisely where the two inhibitors act relative to the initiation of DNA synthesis. It is demonstrated here that mimosine arrests cell cycle progression at the G1-S phase border. The onset of DNA replication occurs within 15 min of releasing the cells from the mimosine block. In contrast, treatment with aphidicolin results in the accumulation of cells in early S phase. These results indicate that mimosine is a suitable compound for affecting the synchronous release of cells from G1 into S phase and for analyzing the biochemical events associated with this cell cycle phase transition. 相似文献
2.
Mouse lymphoma L1210 cells (NCI line) that have low ability to take up cystine became deficient in cellular cysteine and glutathione in normal culture media. The cells entered the resting state during culture when they were seeded at high cell densities. They remained viable and were mostly present in the G1 or G0 phase. In the growth-arrested state, the cellular glutathione content was one order of magnitude lower than in the exponentially growing phase in the presence of 2-mercaptoethanol. In the arrested state, DNA synthesis was almost inhibited, and RNA and protein synthesis decreased markedly. Transfer of the cells to medium containing 2-mercaptoethanol, which improves the utilization of cystine by these cells, produced the rapid recovery of RNA and protein synthesis. DNA synthesis slowly increased, reaching a maximum after a lag period. 相似文献
3.
A Chinese hamster cell cycle mutant arrested at G2 phase has a temperature-sensitive ubiquitin-activating enzyme, E1 总被引:17,自引:0,他引:17
R G Kulka B Raboy R Schuster H A Parag G Diamond A Ciechanover M Marcus 《The Journal of biological chemistry》1988,263(30):15726-15731
The effect of restrictive temperature on ubiquitin conjugation activity has been studied in cells of ts20, a temperature-sensitive cell cycle mutant of the Chinese hamster cell line E36. Ts20 is arrested in early G2 phase at nonpermissive temperature. Immunoblotting with antibodies to ubiquitin conjugates shows that conjugates disappear rapidly at restrictive temperatures in ts20 mutant but not in wild type E36 cells. The incorporation of 125I-ubiquitin into permeabilized ts20 cells is temperature-sensitive. Addition of extracts of another G2 phase mutant, FM3A ts85, with a temperature-sensitive ubiquitin activation enzyme (E1), to permeabilized ts20 cells at restrictive temperatures fails to complement their ubiquitin ligation activity. This indicates that the lesions in the two mutants are similar. Purified E1 from reticulocytes restores the conjugation activity of heat-inactivated permeabilized ts20 cells. Ubiquitin conjugation activity of cell-free extracts of ts20 cells was temperature-sensitive and could be restored by adding purified reticulocyte E1. Purified reticulocyte E2 or E3, on the other hand, did not restore the ubiquitin conjugation activity of heat-treated ts20 extracts. These results are consistent with the conclusion that ts20 has temperature-sensitive ubiquitin-activating enzyme (E1). The fact that two E1 mutants (ts20 and ts85) derived from different cell lines are arrested at the S/G2 boundary at restrictive temperatures strongly indicates that ubiquitin ligation is necessary for passage through this part of the cell cycle. The temperature thresholds of heat shock protein synthesis of ts20 and wild type E36 cells were identical. The implications of these findings with respect to a suggested role of ubiquitin in coupling between protein denaturation and the heat shock response are discussed. 相似文献
4.
Homotypic vacuole fusion occurs in ordered stages of priming, docking, and fusion. Priming, which prepares vacuoles for productive association, requires Sec17p (the yeast homolog of alpha-SNAP), Sec18p (the yeast NSF, an ATP-driven chaperone), and ATP. Sec17p is initially an integral part of the cis-SNARE complex together with vacuolar SNARE proteins and Sec18p (NSF). Previous studies have shown that Sec17p is rapidly released from the vacuole membrane during priming as the cis-SNARE complex is disassembled, but the order and causal relationship of these subreactions has not been known. We now report that the addition of excess recombinant his(6)-Sec17p to primed vacuoles can block subsequent docking. This inhibition is reversible by Sec18p, but the reaction cannot proceed to the tethering and trans-SNARE pairing steps of docking while the Sec17p block is in place. Once docking has occurred, excess Sec17p does not inhibit membrane fusion per se. Incubation of cells with thermosensitive Sec17-1p at nonpermissive temperature causes SNARE complex disassembly. These data suggest that Sec17p can stabilize vacuolar cis-SNARE complexes and that the release of Sec17p by Sec18p and ATP allows disassembly of this complex and activates its components for docking. 相似文献
5.
V M Kotel'nikov V E Gol'dberg G I Kozinets 《Biulleten' eksperimental'no? biologii i meditsiny》1983,95(4):93-95
Feulgen stained nuclei of PHA-stimulated human blood lymphocytes were used for cytophotometric chromatin pattern analysis. Similar distributions of low optical density values indicating the predominance of diffuse chromatin were obtained for G1, S and G2 cells. Condensed chromatin was predominant in G0 and M nuclei. Integral versus average optical densities scatter plots analyses permitted one to distinguish cells undergoing different phases of cell cycle including G0 and G1. 相似文献
6.
Higher order genomic organization and regulatory compartmentalization for cell cycle control at the G1/S‐phase transition 下载免费PDF全文
Prachi N. Ghule David J. Seward Andrew J. Fritz Joseph R. Boyd Andre J. van Wijnen Jane B. Lian Janet L. Stein Gary S. Stein 《Journal of cellular physiology》2018,233(10):6406-6413
7.
Ing-Ming Chiu William F. Marzluff 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1982,699(3):173-182
It has been known for several years that DNA replication and histone synthesis occur concomitantly in cultured mammalian cells. Normally all five classes of histones are synthesized coordinately. However, mouse myeloma cells, synchronized by starvation for isoleucine, synthesize increased amounts of histone H1 relative to the four nucleosomal core histones. This unscheduled synthesis of histone H1 is reduced within 1 h after refeeding isoleucine, and is not a normal component of G1. The synthesis of H1 increases coordinately again with other histones during the S phase. The DNA synthesis inhibitors, cytosine arabinoside and hydroxyurea, block all histone synthesis in S-phase cells. The levels of histone H1 mRNA, relative to the other histone mRNAs, is increased in isoeleucine-starved cells and decreases rapidly after refeeding isoleucine. The increased incorporation of histone H1 is at least partially due to the low isoleucine content of histone H1. Starvation of cells for lysine resulted in a decrease in H1 synthesis relative to core histones. Again the ratio was altered on refeeding the amino acid. 3T3 cells starved for serum also incorporated only H1 histones into chromatin. The ratio of different H1 proteins also changed. The synthesis of the H10 protein was predominant in G0 cells, and reduced in S-phase cells. These data indicate the metabolism of H1 is independent of the other histones when cell growth is arrested. 相似文献
8.
9.
10.
Inhibitors of DNA synthesis induce sister chromatid exchanges at the early S phase of the cell cycle
To investigate the origin of sister chromatid exchanges (SCEs) induced by inhibitors of DNA synthesis, V79/AP4 Chinese hamster cells were treated with aphidicolin, 1--d-arabinofuranosylcytosine, and thymidine. At the end of the treatments we determined both the distribution of the cells in the various phases of the cell cycle and the induction of SCEs. Our data indicate that the cells that were replicating their DNA were arrested at various stages of the S phase. By analyzing the patterns of SCE distribution, we found that the metaphases of the treated cells exhibited either normal or enhanced levels of SCEs. Our results suggest that the inhibitors of DNA synthesis induce SCEs in the cells in early S phase probably by activation of potential replicative origins. 相似文献
11.
R T Crow B Rosenbaum R Smith Y Guo K S Ramos G A Sulikowski 《Bioorganic & medicinal chemistry letters》1999,9(12):1663-1666
Landomycin A was found to inhibit the uptake of [3H]thymidine into DNA in murine smooth muscle cells indicating decreased DNA synthesis. Subsequent studies showed that landomycin A inhibits cell cycle progression. 相似文献
12.
Six human colon carcinoma cell lines were induced to enter stationary phase of growth by nutrient deprivation and cell crowding. Growth kinetics parameters (cell number, flow cytometric analysis of DNA distribution, and labelling and mitotic indices) were measured sequentially for all lines during the various stages of in vitro growth. Our results demonstrated that a substantial fraction of cells (9-18%) were located in G2 phase when they changed from an exponential to a stationary mode of growth. Moreover, a large number of cells in stationary phase of growth had an S-phase DNA content, as determined by flow cytometry, but failed to incorporate radioactive DNA precursors (up to 15-fold difference). To substantiate these findings, cells in stationary phase of growth were induced to enter exponential growth by re-seeding in fresh medium at a lower density. Subsequently observed changes in DNA-compartment distribution, and in labelling and mitotic indices were those expected from cells that had been arrested at different stages of the cycle during their previous stationary phase. Thus, the non-proliferating quiescent state (Q), traditionally located 'somewhere' in G1 phase, appears to be composed also of cells that can be arrested at other stages of the cycle (Qs and QG2). Although the proportion of such cells is rather small, their contribution to the growth kinetics behaviour of human in vivo tumours will become apparent following 'recruiting' or 'synchronizing' clinical manoeuvres and will prevent the formation of a clear-cut wave of synchronized cells. 相似文献
13.
Progression through the cell cycle is dependent upon numerous external factors (growth factors, extracellular matrix components) which exert their effects through the activation of signal transduction networks. During last years we have studied the regulation of progression through the ongoing CHO cell cycle. Recently, we have demonstrated that in CHO cells at least two serum dependent points exist in G1 phase that lead to different cellular responses. The first point is located immediately after mitosis and is suggested to link with apoptosis, while the second is located in late G1 phase and probably corresponds to the classical restriction point R. Because of the suggested link with apoptosis of the restriction point in early G1 phase, we have studied the possible role of PI 3-K in cell cycle progression through the ongoing G1 phase of CHO cells. In the presence of the PI 3-K inhibitors wortmannin or LY294002, cells were arrested during early G1 phase, leading to the expression of cleaved caspase-3, a central mediator of apoptosis. Addition of AP-2, an inhibitor of PKB, the downstream substrate of PI 3-K, at several time points during G1 phase demonstrated that inhibition during early G1 phase caused cell cycle arrest, while addition of the inhibitors during mid or late G1 phase had no effect on S phase entry. As for inhibition of PI 3-K, also inhibition of PKB resulted in expression of cleaved caspase-3. These results clearly demonstrate that a decision point exists in the early G1 phase of the cell cycle; in the presence of PKB activity the cells are continuing cell cycle progression, while in the absence of PKB activity the cells are induced for apoptosis. 相似文献
14.
A method was developed to determine the synthesis of nuclear proteins throughout the cell cycle which was resolved into six compartments on the basis of DNA and nuclear protein content (i.e., early and late G1, early and late S, etc). Using this technique cell-cycle-specific synthesis of certain nuclear proteins was observed. Of particular interest was a 170-kDa protein(s) whose synthesis was initiated in early S phase and reached a maximum rate in late G2. Following irradiation with 6.8 Gy of 137Cs gamma rays the synthesis of the 170-kDa protein(s) declined in the G2 population with near total inhibition seen by 24 h. Synthesis of the 170-kDa protein(s) appeared to be slightly enhanced, and the postirradiation inhibition of its synthesis was reversed, in the presence of 3 mM caffeine. Also, the synthesis of 55-kDa nuclear protein(s) was stimulated throughout the cell cycle in the presence of 3 mM caffeine. These observations suggest new possibilities regarding the mechanism of the X-ray-induced G2 block and its reversal by caffeine. However, the exact role of these nuclear proteins in cellular events remains to be ascertained. 相似文献
15.
Efficient S phase entry is essential for development, tissue repair, and immune defences. However, hyperactive or expedited S phase entry causes replication stress, DNA damage and oncogenesis, highlighting the need for strict regulation. Recent paradigm shifts and conflicting reports demonstrate the requirement for a discussion of the G1/S transition literature. Here, we review the recent studies, and propose a unified model for the S phase entry decision. In this model, competition between mitogen and DNA damage signalling over the course of the mother cell cycle constitutes the predominant control mechanism for S phase entry of daughter cells. Mitogens and DNA damage have distinct sensing periods, giving rise to three Commitment Points for S phase entry (CP1-3). S phase entry is mitogen-independent in the daughter G1 phase, but remains sensitive to DNA damage, such as single strand breaks, the most frequently-occurring lesions that uniquely threaten DNA replication. To control CP1-3, dedicated hubs integrate the antagonistic mitogenic and DNA damage signals, regulating the stoichiometric cyclin: CDK inhibitor ratio for ultrasensitive control of CDK4/6 and CDK2. This unified model for the G1/S cell cycle transition combines the findings of decades of study, and provides an updated foundation for cell cycle research. 相似文献
16.
A new compound which reversibly arrests T lymphocyte cell cycle near the G1/S boundary 总被引:3,自引:0,他引:3
A novel cell cycle blocking agent profoundly suppressed the proliferation of mitogen-stimulated T lymphocytes. The carboxythiazole derivative arrested cells in the G1 phase of the cell cycle but did not inhibit the induction of cell surface receptors for either interleukin-2 or transferrin. The uncoupling of transferrin receptor expression from DNA synthesis indicated that a previously undefined restriction point in the cell cycle has been identified which occurs after transferrin receptor expression in late G1 and just prior to the initiation of DNA replication in S phase. T cells incubated in an inhibitory dose of the carboxythiazole derivative resumed cell cycle progression subsequent to its removal, indicating that the compound reversibly arrests cells at the late G1 restriction point. In contrast to other techniques which have been inefficient in achieving T cell synchronization, T cells released from the block mediated by the carboxythiazole compound progress through S phase with a considerable degree of synchrony. 相似文献
17.
Ehsan H Roef L Witters E Reichheld JP Van Bockstaele D Inzé D Van Onckelen H 《FEBS letters》1999,458(3):349-353
In animal systems, indomethacin inhibits cAMP production via a prostaglandin-adenylyl cyclase pathway. To examine the possibility that a similar mechanism occurs in plants, the effect of indomethacin on the cell cycle of a tobacco bright yellow 2 (TBY-2) cell suspension was studied. Application of indomethacin during mitosis did not interfere with the M/G1 progression in synchronized BY-2 cells but it inhibited cAMP production at the beginning of the G1 phase and arrested the cell cycle progression at G1/S. These observations are discussed in relation to the putative involvement of cAMP biosynthesis in the cell cycle progression in TBY-2 cells. 相似文献
18.
Mitogen-activated protein kinase kinase 1-dependent Golgi unlinking occurs in G2 phase and promotes the G2/M cell cycle transition 下载免费PDF全文
Two controversies have emerged regarding the signaling pathways that regulate Golgi disassembly at the G(2)/M cell cycle transition. The first controversy concerns the role of mitogen-activated protein kinase activator mitogen-activated protein kinase kinase (MEK)1, and the second controversy concerns the participation of Golgi structure in a novel cell cycle "checkpoint." A potential simultaneous resolution is suggested by the hypothesis that MEK1 triggers Golgi unlinking in late G(2) to control G(2)/M kinetics. Here, we show that inhibition of MEK1 by RNA interference or by using the MEK1/2-specific inhibitor U0126 delayed the passage of synchronized HeLa cells into M phase. The MEK1 requirement for normal mitotic entry was abrogated if Golgi proteins were dispersed before M phase by treatment of cells with brefeldin A or if GRASP65, which links Golgi stacks into a ribbon network, was depleted. Imaging revealed that unlinking of the Golgi apparatus begins before M phase, is independent of cyclin-dependent kinase 1 activation, and requires MEK signaling. Furthermore, expression of the GRASP family member GRASP55 after alanine substitution of its MEK1-dependent mitotic phosphorylation sites inhibited both late G(2) Golgi unlinking and the G(2)/M transition. Thus, MEK1 plays an in vivo role in Golgi reorganization, which regulates cell cycle progression. 相似文献
19.
Mouse hepatitis virus (MHV) replication in actively growing DBT and 17Cl-1 cells resulted in the inhibition of host cellular DNA synthesis and the accumulation of infected cells in the G0/G1 phase of the cell cycle. UV-irradiated MHV failed to inhibit host cellular DNA synthesis. MHV infection in quiescent 17Cl-1 cells that had been synchronized in the G0 phase by serum deprivation prevented infected cells from entering the S phase after serum stimulation. MHV replication inhibited hyperphosphorylation of the retinoblastoma protein (pRb), the event that is necessary for cell cycle progression through late G1 and into the S phase. While the amounts of the cellular cyclin-dependent kinase (Cdk) inhibitors p21Cip1, p27Kip1, and p16INK4a did not change in infected cells, MHV infection in asynchronous cultures induced a clear reduction in the amounts of Cdk4 and G1 cyclins (cyclins D1, D2, D3, and E) in both DBT and 17Cl-1 cells and a reduction in Cdk6 levels in 17Cl-1 cells. Infection also resulted in a decrease in Cdk2 activity in both cell lines. MHV infection in quiescent 17Cl-1 cells prevented normal increases in Cdk4, Cdk6, cyclin D1, and cyclin D3 levels after serum stimulation. The amounts of cyclin D2 and cyclin E were not increased significantly after serum stimulation in mock-infected cells, whereas they were decreased in MHV-infected cells, suggesting the possibility that MHV infection may induce cyclin D2 and cyclin E degradation. Our data suggested that a reduction in the amounts of G1 cyclin-Cdk complexes in MHV-infected cells led to a reduction in Cdk activities and insufficient hyperphosphorylation of pRb, resulting in inhibition of the cell cycle in the G0/G1 phase. 相似文献
20.
Regulation of Moloney murine leukemia virus replication in chronically infected cells arrested at the G0/G1 phase. 下载免费PDF全文
The replication of Moloney murine leukemia virus (MMuLV) in chronically infected mouse cells arrested at the G0/G1 phase of the cell cycle by different procedures was investigated. MMuLV production was inhibited in glutamine- and isoleucine (Gln-Ile)-deprived G0/G1 cells. In contrast, butyric acid treatment, which efficiently arrested the cells at the G0/G1 phase of the cell cycle, did not inhibit MMuLV production. Furthermore, the inhibition of MMuLV production caused by either Gln-Ile deprivation or by interferon (IFN) treatment was overcome by butyric acid treatment. Thus, the replication of MMuLV could be dissociated from cell proliferation. The inhibition of MMuLV production in Gln-Ile-deprived cell cultures was compared to the inhibitory effect of IFN, which is known to affect budding and release of the virus. Rates of MMuLV protein synthesis were not affected in both the IFN-treated and Gln-Ile-deprived cells. However, processing of the viral polyprotein Pre65gag into p30 was blocked in the Gln-Ile-deprived cells. Furthermore, whereas in IFN-treated cells, MMuLV accumulated on the cell surface and could be released upon treatment with trypsin, in Gln-Ile-deprived cells, no virions were released by such treatment. These results indicate that in cells arrested by Gln-Ile deprivation, MMuLV is inhibited at a posttranslation step. This step appears to precede the anti-MMuLV block induced by IFN. 相似文献