首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The organization of ribosomal proteins in 16 prokaryotic genomes was studied as an example of comparative genome analyses of gene systems. Hypothetical ribosomal protein-containing operons were constructed. These operons also contained putative genes and other non-ribosomal genes. The correspondences among these genes across different organisms were clarified by sequence homology computations. In this way a cross tabulation of 70 ribosomal proteins genes was constructed. On average, these were organized into 9-14 operons in each genome. There were also 25 non-ribosomal or putative genes in these mainly ribosomal protein operons. Hence the table contains 95 genes in total. It was found that: (i) the conservation of the block of about 20 r-proteins in the L3 and L4 operons across almost the entire eubacteria and ar-chaebacteria is remarkable; (ii) some operons only belong to eubacteria or archaebacte-ria; (iii) although the ribosomal protein operons are highly conserved within domain, there are fine variat  相似文献   

3.
The organization of ribosomal proteins in 16 prokaryotic genomes was studied as an example of comparative genome analyses of gene systems. Hypothetical ribosomal protein-containing operons were constructed. These operons also contained putative genes and other non-ribosomal genes. The correspondences among these genes across different organisms were clarified by sequence homology computations. In this way a cross tabulation of 70 ribosomal proteins genes was constructed. On average, these were organized into 9-14 operons in each genome. There were also 25 non-ribosomal or putative genes in these mainly ribosomal protein operons. Hence the table contains 95 genes in total. It was found that: (i) the conservation of the block of about 20 r-proteins in the L3 and L4 operons across almost the entire eubacteria and archaebacteria is remarkable; (ii) some operons only belong to eubacteria or archaebacteria; (iii) although the ribosomal protein operons are highly conserved within domain, there are fine variations in some operons across different organisms within each domain, and these variations are informative on the evolutionary relations among the organisms. This method provides a new potential for studying the origin and evolution of old species.  相似文献   

4.
Bacteria have developed multiple complex mechanisms ensuring an adequate response to environmental changes. In this context, bacterial cell division and growth are subject to strict control to ensure metabolic balance and cell survival. A plethora of studies cast light on toxin-antitoxin (TA) systems as metabolism regulators acting in response to environmental stress conditions. Many of those studies suggest direct relations between the TA systems and the pathogenic potential or antibiotic resistance of relevant bacteria. Other studies point out that TA systems play a significant role in ensuring stability of mobile genetic material. The evolutionary origin and relations between various TA systems are still a subject of a debate. The impact of toxin-antitoxin systems on bacteria physiology prompted their application in molecular biology as tools allowing cloning of some hard-to-maintain genes, plasmid maintenance and production of recombinant proteins.  相似文献   

5.
The phosphoenolpyruvate:sugar phosphotransferase system (PTS) found in enteric bacteria is a complex enzyme system consisting of a non-sugar-specific phosphotransfer protein called Enzyme I, two small non-sugar-specific phosphocarrier substrates of Enzyme I, designated HPr and FPr, and at least 11 sugar-specific Enzymes II or Enzyme II-III pairs which are phosphorylated at the expense of phospho-HPr or phospho-FPr. In this communication, evidence is presented which suggests that these proteins share a common evolutionary origin and that a fructose-specific phosphotransferase may have been the primordial ancestor of them all. The evidence results from an evaluation of 1) PTS protein sequence data; 2) structural analysis of operons encoding proteins of the PTS; 3) genetic regulatory mechanisms controlling expression of these operons; 4) enzymatic characteristics of the PTS systems; 5) immunological cross reactivities of these proteins; 6) comparative studies of phosphotransferase systems from evolutionarily divergent bacteria; 7) the nature of the phosphorylated protein intermediates; 8) molecular weight comparisons among the different Enzymes II and Enzyme II-III pairs; and 9) interaction studies involving different PTS protein constituents. The evidence leads to a unifying theory concerning the evolutionary origin of the system, explains many structural, functional, and regulatory properties of the phosphotransferase system, and leads to specific predictions which should guide future research concerned with genetic, biochemical, and physiological aspects of the system.  相似文献   

6.
7.
Maturation of the [NiFe] hydrogenases   总被引:14,自引:0,他引:14  
  相似文献   

8.
9.
The seven conserved enzymatic domains required for tryptophan (Trp) biosynthesis are encoded in seven genetic regions that are organized differently (whole-pathway operons, multiple partial-pathway operons, and dispersed genes) in prokaryotes. A comparative bioinformatics evaluation of the conservation and organization of the genes of Trp biosynthesis in prokaryotic operons should serve as an excellent model for assessing the feasibility of predicting the evolutionary histories of genes and operons associated with other biochemical pathways. These comparisons should provide a better understanding of possible explanations for differences in operon organization in different organisms at a genomics level. These analyses may also permit identification of some of the prevailing forces that dictated specific gene rearrangements during the course of evolution. Operons concerned with Trp biosynthesis in prokaryotes have been in a dynamic state of flux. Analysis of closely related organisms among the Bacteria at various phylogenetic nodes reveals many examples of operon scission, gene dispersal, gene fusion, gene scrambling, and gene loss from which the direction of evolutionary events can be deduced. Two milestone evolutionary events have been mapped to the 16S rRNA tree of Bacteria, one splitting the operon in two, and the other rejoining it by gene fusion. The Archaea, though less resolved due to a lesser genome representation, appear to exhibit more gene scrambling than the Bacteria. The trp operon appears to have been an ancient innovation; it was already present in the common ancestor of Bacteria and Archaea. Although the operon has been subjected, even in recent times, to dynamic changes in gene rearrangement, the ancestral gene order can be deduced with confidence. The evolutionary history of the genes of the pathway is discernible in rough outline as a vertical line of descent, with events of lateral gene transfer or paralogy enriching the analysis as interesting features that can be distinguished. As additional genomes are thoroughly analyzed, an increasingly refined resolution of the sequential evolutionary steps is clearly possible. These comparisons suggest that present-day trp operons that possess finely tuned regulatory features are under strong positive selection and are able to resist the disruptive evolutionary events that may be experienced by simpler, poorly regulated operons.  相似文献   

10.
The seven conserved enzymatic domains required for tryptophan (Trp) biosynthesis are encoded in seven genetic regions that are organized differently (whole-pathway operons, multiple partial-pathway operons, and dispersed genes) in prokaryotes. A comparative bioinformatics evaluation of the conservation and organization of the genes of Trp biosynthesis in prokaryotic operons should serve as an excellent model for assessing the feasibility of predicting the evolutionary histories of genes and operons associated with other biochemical pathways. These comparisons should provide a better understanding of possible explanations for differences in operon organization in different organisms at a genomics level. These analyses may also permit identification of some of the prevailing forces that dictated specific gene rearrangements during the course of evolution. Operons concerned with Trp biosynthesis in prokaryotes have been in a dynamic state of flux. Analysis of closely related organisms among the Bacteria at various phylogenetic nodes reveals many examples of operon scission, gene dispersal, gene fusion, gene scrambling, and gene loss from which the direction of evolutionary events can be deduced. Two milestone evolutionary events have been mapped to the 16S rRNA tree of Bacteria, one splitting the operon in two, and the other rejoining it by gene fusion. The Archaea, though less resolved due to a lesser genome representation, appear to exhibit more gene scrambling than the Bacteria. The trp operon appears to have been an ancient innovation; it was already present in the common ancestor of Bacteria and Archaea. Although the operon has been subjected, even in recent times, to dynamic changes in gene rearrangement, the ancestral gene order can be deduced with confidence. The evolutionary history of the genes of the pathway is discernible in rough outline as a vertical line of descent, with events of lateral gene transfer or paralogy enriching the analysis as interesting features that can be distinguished. As additional genomes are thoroughly analyzed, an increasingly refined resolution of the sequential evolutionary steps is clearly possible. These comparisons suggest that present-day trp operons that possess finely tuned regulatory features are under strong positive selection and are able to resist the disruptive evolutionary events that may be experienced by simpler, poorly regulated operons.  相似文献   

11.
12.
Ohyanagi H  Ikeo K  Gojobori T 《Gene》2008,423(2):149-152
Various hypotheses have been proposed on the evolutionary origin of eukaryotic nucleus. Because one of the major cargoes in the nucleocytoplasmic export in the eukaryotic cell is the ribosome, its stimulating proteins called Ribosome Export Factors (REFs) might have an evolutionary history of inscribing the origin of eukaryotic nucleus. With the aim of understanding the evolutionary origin of the nucleus, here we employed the yeast REFs and searched for their evolutionary origin in more than 500 genomes of archaea and eubacteria by the PSI-BLAST search. Our results showed that the non-membranous REFs (non-mREFs) originated exclusively from eubacterial proteins, whereas the membranous REFs (mREFs) are from both archaeal and eubacterial proteins. Since the non-mREFs just work inside the nucleus while the mREFs shuttle between the nucleus and the cytoplasm, these results suggest that the extant REFs working inside the nucleus have derived exclusively from eubacterial proteins, implying that the nucleus arose in a cell that contained chromosomes possessing a substantial fraction of eubacterial genes, in line with the predictions of several models entailing endosymbiosis at eukaryote origins.  相似文献   

13.
14.
Microorganisms have adapted intricate signal transduction mechanisms to coordinate tolerance to toxic levels of metals, including two-component regulatory systems (TCRS). In particular, both cop and czc operons are regulated by TCRS; the cop operon plays a key role in bacterial tolerance to copper, whereas the czc operon is involved in the efflux of cadmium, zinc, and cobalt from the cell. Although the molecular physiology of heavy metal tolerance genes has been extensively studied, their evolutionary relationships are not well-understood. Phylogenetic relationships among heavy-metal efflux proteins and their corresponding two-component regulatory proteins revealed orthologous and paralogous relationships from species divergences and ancient gene duplications. The presence of heavy metal tolerance genes on bacterial plasmids suggests these genes may be prone to spread through horizontal gene transfer. Phylogenetic inferences revealed nine potential examples of lateral gene transfer associated with metal efflux proteins and two examples for regulatory proteins. Notably, four of the examples suggest lateral transfer across major evolutionary domains. In most cases, differences in GC content in metal tolerance genes and their corresponding host genomes confirmed lateral gene transfer events. Three-dimensional protein structures predicted for the response regulators encoded by cop and czc operons showed a high degree of structural similarity with other known proteins involved in TCRS signal transduction, which suggests common evolutionary origins of functional phenotypes and similar mechanisms of action for these response regulators.  相似文献   

15.
Bacteria have evolved mechanisms that allow them to survive in the face of a variety of stresses including nutrient deprivation, antibiotic challenge and engulfment by predator cells. A switch to dormancy represents one strategy that reduces energy utilization and can render cells resistant to compounds that kill growing bacteria. These persister cells pose a problem during treatment of infections with antibiotics, and dormancy mechanisms may contribute to latent infections. Many bacteria encode toxin-antitoxin (TA) gene pairs that play an important role in dormancy and the formation of persisters. VapBC gene pairs comprise the largest of the Type II TA systems in bacteria and they produce a VapC ribonuclease toxin whose activity is inhibited by the VapB antitoxin. Despite the importance of VapBC TA pairs in dormancy and persister formation, little information exists on the structural features of VapC proteins required for their toxic function in vivo. Studies reported here identified 17 single mutations that disrupt the function of VapC1 from non-typeable H. influenzae in vivo. 3-D modeling suggests that side chains affected by many of these mutations sit near the active site of the toxin protein. Phylogenetic comparisons and secondary mutagenesis indicate that VapC1 toxicity requires an alternative active site motif found in many proteobacteria. Expression of the antitoxin VapB1 counteracts the activity of VapC1 mutants partially defective for toxicity, indicating that the antitoxin binds these mutant proteins in vivo. These findings identify critical chemical features required for the biological function of VapC toxins and PIN-domain proteins.  相似文献   

16.
17.
The available sequences of genes encoding the enzymes associated with histidine biosynthesis suggest that this is an ancient metabolic pathway that was assembled prior to the diversification of Bacteria, Archaea, and Eucarya. Paralogous duplication, gene elongation, and fusion events of several different his genes have played a major role in shaping this biosynthetic route. We have analyzed the structure and organization of histidine biosynthetic genes from 55 complete archaeal genomes and combined it with phylogenetic inference in order to investigate the mechanisms responsible for the assembly of the his pathway and the origin of his operons. We show that a wide variety of different organizations of his genes exists in Archaea and that some his genes or entire his (sub-)operons have been likely transferred horizontally between Archaea and Bacteria. However, we show that, in most Archaea, his genes are monofunctional (except for hisD) and scattered throughout the genome, suggesting that his operons might have been assembled multiple times during evolution and that in some cases they are the result of recent evolutionary events. An evolutionary model for the structure and organization of his genes in LUCA is proposed.  相似文献   

18.
19.
Small heat shock proteins (sHSPs), as one subclass of molecular chaperones, are important for cells to protect proteins under stress conditions. Unlike the large HSPs (represented by Hsp60 and Hsp70), sHSPs are highly divergent in both primary sequences and oligomeric status, with their evolutionary relationships being unresolved. Here the phylogenetic analysis of a representative 51 sHSPs (covering the six subfamilies: bacterial class A, bacterial class B, archae, fungi, plant, and animal) reveals a close relationship between bacterial class A and animal sHSPs which form an outgroup. Accumulating data indicate that the oligomers from bacterial class A and animal sHSPs appear to exhibit polydispersity, while those from the rest exhibit monodispersity. Together, the close evolutionary relationship and the similarity in oligomeric polydispersity between bacterial class A and animal sHSPs not only suggest a potential evolutionary origin of the latter from the former, but also imply that their oligomeric polydispersity is somehow a property determined by their primary sequences. [Reviewing Editor: Dr. Martin Kreitman]  相似文献   

20.
Bacterial toxin-antitoxin (TA) systems are operons that code for a stable toxic protein and a labile antitoxin. TA modules are widespread on the chromosomes of free-living Bacteria and Archaea, where they presumably act as stress response elements. The chromosome of Escherichia coli K-12 encodes four known TA pairs, as well as the dinJ-yafQ operon, which is hypothesized to be a TA module based on operon organization similar to known TA genes. Induction of YafQ inhibited cell growth, but its toxicity was counteracted by coexpression of dinJ cloned on a separate plasmid. YafQ(His)(6) and DinJ proteins coeluted in Ni(2+)-affinity and gel filtration chromatography, implying the formation of a specific and stable YafQ-DinJ protein complex with an estimated molecular mass of c. 37.3 kDa. Induction of YafQ reduced protein synthesis up to 40% as judged by incorporation of [(35)S]-methionine, but did not influence the rates of DNA and RNA synthesis. Structure modelling of E. coli YafQ revealed its structural relationship with bacterial toxins of known structure suggesting that it might act as a sequence-specific mRNA endoribonuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号