首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The postsynaptic membrane from Torpedo electric organ contains, in addition to the acetylcholine receptor (AChR), a major peripheral membrane protein of approximately 43,000 mol wt (43K protein). Previous studies have shown that this protein is closely associated with AChR and may be involved in anchoring receptors to the postsynaptic membrane. In this study, binding sites for monoclonal antibodies (mabs) to the 43K protein have been compared to the distribution of AChR in Xenopus laevis muscle cells in culture. In double label immunofluorescence experiments, clusters of AChR that occur spontaneously on these cells were stained with anti-43K mabs. Newly formed receptor clusters induced with positive polypeptide-coated latex beads were also stained with anti-43K mabs as early as 12 h after the application of the beads. Exact correspondence in the distribution of the anti-43K protein binding sites and the AChR was found in both types of clusters. These results suggest that the 43K protein becomes associated with AChR clusters during a period of active postsynaptic membrane differentiation. Thus, this protein may participate in the clustering process.  相似文献   

2.
Our double labelling method allows the junctional AChE and AChR distributions to be stained in the same preparation. This method which provides good definition of the fine morphology of synaptic structure and is capable of revealing a very weak AChE activity is of a particular value in studies of synaptogenesis.  相似文献   

3.
The formation of acetylcholine receptor (AChR) clusters at the neuromuscular junction was investigated by observing the sequential changes in AChR cluster distribution on cultured Xenopus muscle cells. AChRs were labeled with tetramethylrhodamine-conjugated alpha-bungarotoxin (TMR-alpha BT). Before innervation AChRs were distributed over the entire surface of muscle cells with occasional spots of high density (hot spots). When the nerve contacted the muscle cell, the large existing hot spots disappeared and small AChR clusters (less than 1 micron in diameter) initially emerged from the background along the area of nerve contact. They grew in size, increased in number, and fused to form larger clusters over a period of 1 or 2 days. Receptor clusters did not migrate as a whole as observed during "cap" formation in B lymphocytes. The rate of recruitment of AChRs at the nerve-muscle junction varied from less than 50 binding sites to 1000 sites/hr for alpha BT. In this study the diffusion-trap mechanism was tested for the nerve-induced receptor accumulation. The diffusion coefficient of diffusely distributed AChRs was measured using the fluorescence photobleaching recovery method and found to be 2.45 X 10(-10) cm2/sec at 22 degrees C. There was no significant difference in these values among the muscle cells cultured without nerve, the non-nerve-contacted muscle cells in nerve-muscle cultures, and the nerve-contacted muscle cells. It was found that the diffusion of receptors in the membrane is not rate-limiting for AChR accumulation.  相似文献   

4.
The effect of denervation on acetylcholine receptor (AChR) cluster distribution on cultured Xenopus muscle cells has been examined in order to study the role of intact nerve in the maintenance of clusters at the nerve-muscle junction during development. AChRs on the muscle cell were labeled with tetramethyl rhodamine-conjugated alpha-bungarotoxin and sequential changes in AChR cluster distribution were examined with a fluorescence microscope using an image intensifier. Denervation was carried out by exposing the nerve cell body to a focused laser light of a high intensity. After this procedure the neurites originating from the cell quickly disintegrated and large AChR clusters associated with nerve divided into smaller clusters. Individual clusters subsequently decreased in size and finally disappeared. In about 30% of the cases new AChR clusters appeared at the extrajunctional region after denervation. These observations indicate that intact nerves are necessary for the maintenance of receptor localization at the nerve-muscle junction and that nerve-induced accumulation is seemingly reversible during the early period of synapse formation. We tested the idea that receptor clusters were lost due to diffusion of receptors in the muscle membrane after denervation. However, the rate of receptor cluster dispersal after denervation was much slower than that predicted by the diffusion model, suggesting that diffusion of receptors is not a rate-limiting step. Furthermore, we found that receptor clusters at the junction stabilize during days in culture. Thus, 80-90% of receptor clusters at the nerve-muscle junction disappeared at 7 hr after denervation in 1-day cocultures, while about 50% of receptor clusters remained after denervation in 3-day cocultures.  相似文献   

5.
Exposure of sternomastoid muscles excised from 16-day embryonic rats to medium depleted of Ca2+ or containing high concentrations of KCl leads to extensive loss of aggregates of acetylcholine receptors newly formed at the motor end plate region. Upon restoration of Ca2+ or removal of excess KCl, receptor accumulations reappear in the central regions of about one-third of the muscle fibers. This susceptibility of junctional AChR aggregates lasts only a short while during development of the neuromuscular junction. By the time of birth, end plate receptor aggregates have become resistant to these treatments.  相似文献   

6.
A critical event in the formation of vertebrate neuromuscular junctions (NMJs) is the postsynaptic clustering of acetylcholine receptors (AChRs) in muscle. AChR clustering is triggered by the activation of MuSK, a muscle-specific tyrosine kinase that is part of the functional receptor for agrin, a nerve-derived heparan sulfate proteoglycan (HSPG). At the NMJ, heparan sulfate (HS)-binding growth factors and their receptors are also localized but their involvement in postsynaptic signaling is poorly understood. In this study we found that hepatocyte growth factor (HGF), an HS-binding growth factor, surrounded muscle fibers and was localized at NMJs in rat muscle sections. In cultured Xenopus muscle cells, HGF was enriched at spontaneously occurring AChR clusters (hot spots), where HSPGs were also concentrated, and, following stimulation of muscle cells by agrin or cocultured neurons, HGF associated with newly formed AChR clusters. HGF presented locally to cultured muscle cells by latex beads induced new AChR clusters and dispersed AChR hot spots, and HGF beads also clustered phosphotyrosine, activated c-Met, and proteins of dystrophin complex; clustering of AChRs and associated proteins by HGF beads required actin polymerization. Lastly, although bath-applied HGF alone did not induce new AChR clusters, addition of HGF potentiated agrin-dependent AChR clustering in muscle. Our findings suggest that HGF promotes AChR clustering and synaptogenic signaling in muscle during NMJ development.  相似文献   

7.
The Akt family of serine‐threonine kinases integrates a myriad of signals governing cell proliferation, apoptosis, glucose metabolism, and cytoskeletal organization. Akt affects neuronal morphology and function, influencing dendrite growth and the expression of ion channels. Akt is also an integral element of PI3Kinase‐target of rapamycin (TOR)‐Rheb signaling, a pathway that affects synapse assembly in both vertebrates and Drosophila. Our recent findings demonstrated that disruption of this pathway in Drosophila is responsible for a number of neurodevelopmental deficits that may also affect phenotypes associated with tuberous sclerosis complex, a disorder resulting from mutations compromising the TSC1/TSC2 complex, an inhibitor of TOR (Dimitroff et al., 2012). Therefore, we examined the role of Akt in the assembly and physiological function of the Drosophila neuromuscular junction (NMJ), a glutamatergic synapse that displays developmental and activity‐dependent plasticity. The single Drosophila Akt family member, Akt1 selectively altered the postsynaptic targeting of one glutamate receptor subunit, GluRIIA, and was required for the expansion of a specialized postsynaptic membrane compartment, the subsynaptic reticulum (SSR). Several lines of evidence indicated that Akt1 influences SSR assembly by regulation of Gtaxin, a Drosophila t‐SNARE protein (Gorczyca et al., 2007) in a manner independent of the mislocalization of GluRIIA. Our findings show that Akt1 governs two critical elements of synapse development, neurotransmitter receptor localization, and postsynaptic membrane elaboration. © 2013 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 73: 723–743, 2013  相似文献   

8.
Clustering of acetylcholine receptors (AChR) at the postsynaptic membrane is a crucial step in the development of neuromuscular junctions (NMJ). During development and after denervation, aneural AChR clusters form on the sarcolemma. Recent studies suggest that these receptors are critical for guiding and initiating synaptogenesis. The aim of this study is to investigate the effect of agrin and laminin‐1; agents with known AChR clustering activity; on NMJ formation and muscle maturation. Primary myoblasts were differentiated in vitro on collagen, laminin or collagen and laminin‐coated surfaces in the presence or absence of agrin and laminin. The pretreated cells were then subject to innervation by PC12 cells. The number of neuromuscular junctions was assessed by immunocytochemical co‐localization of AChR clusters and the presynaptic marker synaptophysin. Functional neuromuscular junctions were quantitated by analysis of the level of spontaneous as well as neuromuscular blocker responsive contractile activity and muscle maturation was assessed by the degree of myotube striation. Agrin alone did not prime muscle for innervation while a combination of agrin and laminin pretreatment increased the number of neuromuscular junctions formed and enhanced acetylcholine based neurotransmission and myotube striation. This study has direct clinical relevance for treatment of denervation injuries and creating functional neuromuscular constructs for muscle tissue repair. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 551–565, 2016  相似文献   

9.
Fast and accurate synaptic transmission requires high-density accumulation of neurotransmitter receptors in the postsynaptic membrane. During development of the neuromuscular junction, clustering of acetylcholine receptors (AChR) is one of the first signs of postsynaptic specialization and is induced by nerve-released agrin. Recent studies have revealed that different mechanisms regulate assembly vs stabilization of AChR clusters and of the postsynaptic apparatus. MuSK, a receptor tyrosine kinase and component of the agrin receptor, and rapsyn, an AChR-associated anchoring protein, play crucial roles in the postsynaptic assembly. Once formed, AChR clusters and the postsynaptic membrane are stabilized by components of the dystrophin/utrophin glycoprotein complex, some of which also direct aspects of synaptic maturation such as formation of postjunctional folds. Nicotinic receptors are also expressed across the peripheral and central nervous system (PNS/CNS). These receptors are localized not only at the pre- but also at the postsynaptic sites where they carry out major synaptic transmission. In neurons, they are found as clusters at synaptic or extrasynaptic sites, suggesting that different mechanisms might underlie this specific localization of nicotinic receptors. This review summarizes the current knowledge about formation and stabilization of the postsynaptic apparatus at the neuromuscular junction and extends this to explore the synaptic structures of interneuronal cholinergic synapses.  相似文献   

10.
11.
12.
The dystrophin-associated protein (DAP) complex spans the sarcolemmal membrane linking the cytoskeleton to the basement membrane surrounding each myofiber. Defects in the DAP complex have been linked previously to a variety of muscular dystrophies. Other evidence points to a role for the DAP complex in formation of nerve-muscle synapses. We show that myotubes differentiated from dystroglycan-/- embryonic stem cells are responsive to agrin, but produce acetylcholine receptor (AChR) clusters which are two to three times larger in area, about half as dense, and significantly less stable than those on dystroglycan+/+ myotubes. AChRs at neuromuscular junctions are similarly affected in dystroglycan-deficient chimeric mice and there is a coordinate increase in nerve terminal size at these junctions. In culture and in vivo the absence of dystroglycan disrupts the localization to AChR clusters of laminin, perlecan, and acetylcholinesterase (AChE), but not rapsyn or agrin. Treatment of myotubes in culture with laminin induces AChR clusters on dystroglycan+/+, but not -/- myotubes. These results suggest that dystroglycan is essential for the assembly of a synaptic basement membrane, most notably by localizing AChE through its binding to perlecan. In addition, they suggest that dystroglycan functions in the organization and stabilization of AChR clusters, which appear to be mediated through its binding of laminin.  相似文献   

13.
The possible effects of the alkaloids vinblastine and colchicine on the postsynaptic membrane of the frog neuromuscular junction were investigated using voltage-clamp techniques. Concentrations of vinblastine and colchicine which had been shown to exert no effect on the amplitude and duration of miniature endplate currents (MEPC) and the current-voltage relationship of low-quantal endplate currents (EPC) together with the coefficient of voltage-dependent EPC decay did produce a considerable rise in the amplitude of response to iontophoretically applied acetylcholine (ACh). In addition, vinblastine and colchicine accelerate MEPC and EPC during acetylcholine esterase inhibition while further depressing the amplitude of multi-quantal EPC succeeding at the rate of 10 Hz as well as response to regular (5–10 Hz) application of ACh from a micropipet. The dosage-frequency effects of vinblastine and colchicine on the postsynaptic membrane (as described) are presumed to be unconnected with the action of these agents on muscle fiber cytoskeleton but the results of accelerated desensitization of cholinoreceptors.S. V. Kurashov Medical Institute, Kazan. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 75–81, January–February, 1988.  相似文献   

14.
At the adult neuromuscular junction, acetylcholine (ACh) receptors are highly localized at the subsynaptic membrane, whereas, embryonic myotubes before innervation have receptors distributed over the entire surface. Thus sometime during development, ACh receptors accumulate to the nerve contact area. This nerve-induced receptor accumulation can be reproduced in Xenopus nerve-muscle cultures, which provides us with a unique opportunity to investigate the underlying molecular mechanism of this event. Anderson and Cohen (1977) have shown that nerve-induced receptor accumulation is, at least partly, due to migration of pre-existing receptors. It is, thus, plausible that freely diffusing receptors in the membrane are trapped at the nerve-contact region and form clusters. We tested this diffusion trap model. First, receptors in the background region are indeed predominantly mobile and those in the cluster are immobile. Second, the diffusion of receptors in the membrane is fast enough to account for the rate of receptor accumulation. Third, when receptors were immobilized by a lectin, Concanavalin A, the nerve no longer induced receptor accumulation. Thus the diffusion trap model seems adequate to accommodate these observations. Aside from this diffusion mediated mechanism, it is conceivable that newly formed receptors are preferentially inserted at the nerve contact site and these new receptors become immobilized at the site of insertion. To test this hypothesis we stained new receptors separately from old ones and quantitatively compared their distribution. For this purpose we developed a method to quantify fluorescence micrographs. We found that the ratio between old and new receptors was similar at all nerve-induced clusters examined and at the diffusely distributed region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Dystroglycan is a member of the transmembrane dystrophin glycoprotein complex in muscle that binds to the synapse-organizing molecule agrin. Dystroglycan binding and AChR aggregation are mediated by two separate domains of agrin. To test whether dystroglycan plays a role in receptor aggregation at the neuromuscular junction, we overexpressed it by injecting rabbit dystroglycan RNA into one- or two-celled Xenopus embryos. We measured AChR aggregation in myotomes by labeling them with rhodamine-alpha-bungarotoxin followed by confocal microscopy and image analysis. Dystroglycan overexpression decreased AChR aggregation at the neuromuscular junction. This result is consistent with dystroglycan competition for agrin without signaling AChR aggregation. It also supports the hypothesis that dystroglycan is not the myotube-associated specificity component, (MASC) a putative coreceptor needed for agrin to activate muscle-specific kinase (MuSK) and signal AChR aggregation. Dystroglycan was distributed along the surface of muscle membranes, but was concentrated at the ends of myotomes, where AChRs normally aggregate at synapses. Overexpressed dystroglycan altered AChR aggregation in a rostral-caudal gradient, consistent with the sequential development of neuromuscular synapses along the embryo. Increasing concentrations of dystroglycan RNA did not further decrease AChR aggregation, but decreased embryo survival. Development often stopped during gastrulation, suggesting an essential, nonsynaptic role of dystroglycan during this early period of development.  相似文献   

16.
A new method was devised to visualize actin polymerization induced by postsynaptic differentiation signals in cultured muscle cells. This entails masking myofibrillar filamentous (F)-actin with jasplakinolide, a cell-permeant F-actin-binding toxin, before synaptogenic stimulation, and then probing new actin assembly with fluorescent phalloidin. With this procedure, actin polymerization associated with newly induced acetylcholine receptor (AChR) clustering by heparin-binding growth-associated molecule-coated beads and by agrin was observed. The beads induced local F-actin assembly that colocalized with AChR clusters at bead-muscle contacts, whereas both the actin cytoskeleton and AChR clusters induced by bath agrin application were diffuse. By expressing a green fluorescent protein-coupled version of cortactin, a protein that binds to active F-actin, the dynamic nature of the actin cytoskeleton associated with new AChR clusters was revealed. In fact, the motive force generated by actin polymerization propelled the entire bead-induced AChR cluster with its attached bead to move in the plane of the membrane. In addition, actin polymerization is also necessary for the formation of both bead and agrin-induced AChR clusters as well as phosphotyrosine accumulation, as shown by their blockage by latrunculin A, a toxin that sequesters globular (G)-actin and prevents F-actin assembly. These results show that actin polymerization induced by synaptogenic signals is necessary for the movement and formation of AChR clusters and implicate a role of F-actin as a postsynaptic scaffold for the assembly of structural and signaling molecules in neuromuscular junction formation.  相似文献   

17.
We have used antibodies to clathrin light chains in immunocytochemical studies of acetylcholine receptor (AChR) clusters of cultured rat myotubes. Immunofluorescence and ultrastructural experiments show that clathrin is present in coated pits and in large plaques of coated membrane. Coated membrane plaques are spatially and structurally distinct from AChR-rich membrane domains and the bundles of microfilaments that are also present in AChR clusters. Clusters contain a relatively constant amount of clathrin light chain protein, which is not dependent on the amount of AChR. Clathrin plaques remain after AChR domains are disrupted by azide, or after microfilament bundles are destabilized by cytochalasin D. Extraction of myotubes with saponin removes clathrin without disrupting AChR domains. Thus, clathrin plaques, microfilament bundles, and AChR-rich domains are independently stabilized.  相似文献   

18.
We recently reported the detection of multiple classes of calmodulin-binding proteins in subcellular fractions of chicken embryo fibroblasts by using a gel binding procedure (Van Eldik, L.J., and W.H. Burgess, 1983, J. Biol. Chem., 258:4539-4547). In this report we identify many of these calmodulin-binding proteins and provide further evidence for the existence of multiple classes of calmodulin-binding proteins based on the interaction of these proteins with calmodulin and other calcium-modulated proteins. The fact that, in some cases, the same calmodulin-binding protein can bind troponin C and S100 alpha suggests that similar functional domains may be present in these distinct calcium-modulated proteins. We also have used protocols based on purification steps for calmodulin-binding proteins and calmodulin-regulated activities from other systems, in conjunction with enzymatic assays and various immunological methods, to identify many of the calmodulin-binding proteins in chicken embryo fibroblasts. The identities of these proteins suggest in vivo roles for calmodulin in the regulation of cell shape and motility, cyclic nucleotide metabolism, and possibly nucleic acid and protein turnover in fibroblasts.  相似文献   

19.
D H Sanes  M M Poo 《Neuron》1989,2(3):1237-1244
The hypotheses that selective formation of nerve-muscle connections depends upon intrinsic cellular properties, endowed either by the cell's rostral-caudal position in the embryo or its lineage, were tested directly in Xenopus embryonic cell cultures. The position or the lineage of embryonic cells was traced in vitro by previous injection of fluorophore-conjugated dextran molecules into individual blastomeres. Synaptic efficacy was assayed by recording synaptic currents from neurite-contacted muscle cells in the culture, and the physical affinity of neurites for muscle cells of different positional or clonal origins was assayed by counting the frequency of association between the neurites' growth cones and the muscle cells. Both assays showed no apparent preference between nerve and muscle cells of similar rostral-caudal positions or clonal origins, suggesting that there is little position- or lineage-dependent selectivity in the initial nerve-muscle interactions.  相似文献   

20.
We have used the microtubule-stabilizing drug taxol to examine the relationship between microtubules and the appearance and cell surface distribution of acetylcholine receptors (AChRs) in primary cultures of chick embryonic muscle cells. Taxol at a 5-microM concentration induced the large scale polymerization of tubulin in muscle cells that was most obvious as intermittent bundles of microtubules along the myotube. Prominent bundles of microtubules were also clearly visible in the fibroblasts. This concentration of taxol had no significant effect on the incorporation rate, increased synthesis induced by brain extract or the total cell surface number of AChRs measured over a 24-h period. Thus, excess polymerization of microtubules does not affect the movement of receptors to the cell surface. However, when cell surface AChR distribution was examined using rhodamine-conjugated alpha-bungarotoxin, taxol treatment of myotubes was shown to induce the aggregation of receptors. If receptors were labeled before taxol addition, aggregation of these prelabeled receptors was also seen, a result indicating that taxol can induce the movement of receptors already in the membrane. We believe this evidence further implicates microtubules as being involved in the movement of these cell surface receptors in the plane of the myotube membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号