首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capping protein, a heterodimeric protein composed of alpha and beta subunits, is a key cellular component regulating actin filament assembly and organization. It binds to the barbed ends of the filaments and works as a 'cap' by preventing the addition and loss of actin monomers at the end. Here we describe the crystal structure of the chicken sarcomeric capping protein CapZ at 2.1 A resolution. The structure shows a striking resemblance between the alpha and beta subunits, so that the entire molecule has a pseudo 2-fold rotational symmetry. CapZ has a pair of mobile extensions for actin binding, one of which also provides concomitant binding to another protein for the actin filament targeting. The mobile extensions probably form flexible links to the end of the actin filament with a pseudo 2(1) helical symmetry, enabling the docking of the two in a symmetry mismatch.  相似文献   

2.
We have studied the interaction of CapZ, a barbed-end actin capping protein from the Z line of skeletal muscle, with actin. CapZ blocks actin polymerization and depolymerization (i.e., it "caps") at the barbed end with a Kd of approximately 0.5-1 nM or less, measured by three different assays. CapZ inhibits the polymerization of ATP-actin onto filament ends with ATP subunits slightly less than onto ends with ADP subunits, and onto ends with ADP-BeF3- subunits about as much as ends with ADP subunits. No effect of CapZ is seen at the pointed end by measurements either of polymerization from acrosomal processes or of the critical concentration for polymerization at steady state. CapZ has no measureable ability to sever actin filaments in a filament dilution assay. CapZ nucleates actin polymerization at a rate proportional to the first power of the CapZ concentration and the 2.5 power of the actin concentration. No significant binding is observed between CapZ and rhodamine-labeled actin monomers by fluorescence photobleaching recovery. These new experiments are consistent with but do not distinguish between three models for nucleation proposed previously (Cooper & Pollard, 1985). As a prelude to the functional studies, the purification protocol for CapZ was refined to yield 2 mg/kg of chicken breast muscle in 1 week. The activity is stable in solution and can be lyophilized. The native molecular weight is 59,600 +/- 2000 by equilibrium ultracentrifugation, and the extinction coefficient is 1.25 mL mg-1 cm-1 by interference optics. Polymorphism of the alpha and beta subunits has been detected by isoelectric focusing and reverse-phase chromatography. CapZ contains no phosphate (less than 0.1 mol/mol).  相似文献   

3.
We have compared the functional properties of CapZ from fish white skeletal muscle with those of CapZ from chicken muscle. CapZ is a heterodimer, which enhances actin nucleation and inhibits the depolymerization process by binding to the barbed ends of microfilaments. Here, we report the interaction of CapZ not only with F-actin, but also with monomeric actin. The affinity of sea bass CapZ for G-actin estimated by enzyme-linked immunosorbent assay (ELISA) was in the μM range. This association was PIP2 dependent. Binding contacts with the barbed end of actin were delimited by both ELISA and fluorescence approaches. One site (actin sequence 338–348) was located in a helical region of the subdomain 1, region already implicated in the interaction with other actin binding proteins such as gelsolin. Another site implicates the C-terminal region (sequence 360–372) of actin. Finally, the partial competition of antibodies directed against CapZ α or β-subunits towards CapZ interaction with actin filaments suggests both subunits participate in the complex with actin.  相似文献   

4.
Coulton A  Lehrer SS  Geeves MA 《Biochemistry》2006,45(42):12853-12858
Skeletal and smooth muscle tropomyosin (Tm) require acetylation of their N-termini to bind strongly to actin. Tm containing an N-terminal alanine-serine (AS) extension to mimic acetylation has been widely used to increase binding. The current study investigates the ability of an N-terminal AS extension to mimic native acetylation for both alpha alpha and beta beta smooth Tm homodimers. We show that (1) AS alpha-Tm binds actin 100-fold tighter than alpha-Tm and 2-fold tighter than native smooth alphabeta-Tm, (2) beta-Tm requires an AS extension to bind actin, and (3) AS beta-Tm binds actin 10-fold weaker than AS alpha-Tm. Tm is present in smooth muscle tissues as >95% heterodimer; therefore, we studied the binding of recombinant alphabeta heterodimers with different AS extensions. This study shows that recombinant Tm requires an AS extension on both alpha and beta chains to bind like native Tm and that the alpha chain contributes more to actin binding than the beta chain. Once assembled onto an actin filament, all smooth muscle Tm's regulate S1 binding to actin Tm in the same way, irrespective of the presence of an AS extension.  相似文献   

5.
We describe herein the purification of a protein from skeletal muscle that binds to ("caps") the morphologically defined barbed end of actin filaments. This actin-capping protein appeared to be a heterodimer with chemically and immunologically distinct subunits of Mr = 36,000 (alpha) and 32,000 (beta), Rs = 37 A, s20,w = 4.0 S, and a calculated native molecular weight of approximately 61,000. The protein was obtained in milligram quantities at greater than 95% purity from acetone powder of chicken skeletal muscle by extraction in 0.6 M KI, precipitation with ammonium sulfate, sequential chromatographic steps on DEAE-cellulose, hydroxylapatite, and Sephacryl S-200, followed by preparative rate zonal sucrose density gradient centrifugation. In immunoblots of myofibrillar proteins, affinity-purified antibodies selectively recognized protein bands of the same molecular weight as the subunits of the capping protein to which they were made, indicating that the isolated capping protein is a native myofibrillar protein, and not a proteolytic digestion product of a larger muscle protein. A specific interaction of the capping protein with the barbed end of actin filaments was indicated by its ability to inhibit actin filament assembly nucleated by spectrin-band 4.1-actin complex in 0.4 mM Mg2+, accelerate actin filament formation and increase the critical concentration of actin in 2-5 mM Mg2+, 75-100 mM KCl, and inhibit the addition of actin monomers to the barbed end of heavy meromyosin-decorated actin filaments as determined by electron microscopy. All of these effects occurred at nanomolar concentrations of capping protein and micromolar concentrations of actin, suggesting a high affinity interaction.  相似文献   

6.
A mAb (1E5) that binds the COOH-terminal region of the beta subunit of chicken CapZ inhibits the ability of CapZ to bind the barbed ends of actin filaments and nucleate actin polymerization. CapZ prepared as fusion proteins in bacteria or nonfusion proteins by in vitro translation has activity similar to that of CapZ purified from muscle. Deletion of the COOH-terminus of the beta subunit of CapZ leads to a loss of CapZ's ability to bind the barbed ends of actin filaments. A peptide corresponding to the COOH-terminal region of CapZ beta, expressed as a fusion protein, binds actin monomers. The mAb 1E5 also inhibits the binding of this peptide to actin. These results suggest that the COOH-terminal region of the beta subunit of CapZ is an actin-binding site. The primary structure of this region is not similar to that of potential actin-binding sites identified in other proteins. In addition, the primary structure of this region is not conserved across species.  相似文献   

7.
ABSTRACT: BACKGROUND: Capping protein (CP), also known as CapZ in muscle cells and Cap32/34 in Dictyostelium discoideum, plays a major role in regulating actin filament dynamics. CP is a ubiquitously expressed heterodimer comprising an alpha- and beta-subunit. It tightly binds to the fast growing end of actin filaments, thereby functioning as a "cap" by blocking the addition and loss of actin subunits. Vertebrates contain two somatic variants of CP, one being primarily found at the cell periphery of non-muscle tissues while the other is mainly localized at the Z-discs of skeletal muscles. RESULTS: To elucidate structural and functional differences between cytoplasmic and sarcomercic CP variants, we have solved the atomic structure of Cap32/34 (32 = beta- and 34 = alpha-subunit) from the cellular slime mold Dictyostelium at 2.2 A resolution and compared it to that of chicken muscle CapZ. The two homologs display a similar overall arrangement including the attached alpha-subunit C-terminus (alpha-tentacle) and the flexible beta-tentacle. Nevertheless, the structures exhibit marked differences suggesting considerable structural flexibility within the alpha-subunit. In the alpha-subunit we observed a bending motion of the beta-sheet region located opposite to the position of the C-terminal beta-tentacle towards the antiparallel helices that interconnect the heterodimer. Recently, a two domain twisting attributed mainly to the beta-subunit has been reported. At the hinge of these two domains Cap32/34 contains an elongated and highly flexible loop, which has been reported to be important for the interaction of cytoplasmic CP with actin and might contribute to the more dynamic actin-binding of cytoplasmic compared to sarcomeric CP (CapZ). CONCLUSIONS: The structure of Cap32/34 from Dictyostelium discoideum allowed a detailed analysis and comparison between the cytoplasmic and sarcomeric variants of CP. Significant structural flexibility could particularly be found within the alpha-subunit, a loop region in the beta-subunit, and the surface of the alpha-globule where the amino acid differences between the cytoplasmic and sarcomeric mammalian CP are located. Hence, the crystal structure of Cap32/34 raises the possibility of different binding behaviours of the CP variants toward the barbed end of actin filaments, a feature, which might have arisen from adaptation to different environments.  相似文献   

8.
The thermal and the urea-induced unfolding profiles of the coiled-coil alpha-helix of native and refolded tropomyosin from chicken gizzard were studied by circular dichroism. Refolding of tropomyosin at low temperature from alpha + beta subunits, dissociated by guanidinium chloride, urea, or high temperature, predominantly produced alpha alpha + beta beta homodimers in agreement with earlier studies of refolding from guanidinium chloride (Graceffa, P. (1989) Biochemistry 28, 1282-1287). The presence of two unfolding transitions in low salt solutions with about equal helix loss verified the composition with the first unfolding transition of the homodimer mixture originating from alpha alpha. In contrast, refolding by equilibrating at temperatures close to physiological, however, produced the native alpha beta heterodimer, which unfolded in a single transition. The refolding kinetics of dissociated alpha + beta subunits indicated that beta beta homodimers form first, leading to alpha alpha homodimers both of which are relatively stable against chain exchange below approximately 25 degrees C. Equilibrating the homodimer mixture at 37-40 degrees C for long times, however, produced the native alpha beta molecule via chain exchange. The equilibria involved indicate that the free energy of formation from subunits of alpha beta is much less than that of (alpha alpha + beta beta)/2. In vivo folding of alpha beta from the two separate alpha and beta gene products is, therefore, thermodynamically favored over the formation of homodimers and biological factors need not be considered to explain the native preferred alpha beta composition.  相似文献   

9.
The barbed ends of actin filaments in striated muscle are anchored within the Z-disc and capped by CapZ; this protein blocks actin polymerization and depolymerization in vitro. The mature lengths of the thin filaments are likely specified by the giant "molecular ruler" nebulin, which spans the length of the thin filament. Here, we report that CapZ specifically interacts with the C terminus of nebulin (modules 160-164) in blot overlay, solid-phase binding, tryptophan fluorescence, and SPOTs membrane assays. Binding of nebulin modules 160-164 to CapZ does not affect the ability of CapZ to cap actin filaments in vitro, consistent with our observation that neither of the two C-terminal actin binding regions of CapZ is necessary for its interaction with nebulin. Knockdown of nebulin in chick skeletal myotubes using small interfering RNA results in a reduction of assembled CapZ, and, strikingly, a loss of the uniform alignment of the barbed ends of the actin filaments. These data suggest that nebulin restricts the position of thin filament barbed ends to the Z-disc via a direct interaction with CapZ. We propose a novel molecular model of Z-disc architecture in which nebulin interacts with CapZ from a thin filament of an adjacent sarcomere, thus providing a structural link between sarcomeres.  相似文献   

10.
Cytoskeletal filaments are often capped at one end, regulating assembly and cellular location. The actin filament is a right-handed, two-strand long-pitch helix. The ends of the two protofilaments are staggered in relation to each other, suggesting that capping could result from one protein binding simultaneously to the ends of both protofilaments. Capping protein (CP), a ubiquitous alpha/beta heterodimer in eukaryotes, tightly caps (K(d) approximately 0.1-1 nM) the barbed end of the actin filament (the end favored for polymerization), preventing actin subunit addition and loss. CP is critical for actin assembly and actin-based motility in vivo and is an essential component of the dendritic nucleation model for actin polymerization at the leading edge of cells. However, the mechanism by which CP caps actin filaments is not well understood. The X-ray crystal structure of CP has inspired a model where the C termini ( approximately 30 amino acids) of the alpha and beta subunits of CP are mobile extensions ("tentacles"), and these regions are responsible for high-affinity binding to, and functional capping of, the barbed end. We tested the tentacle model in vitro with recombinant mutant CPs. Loss of both tentacles causes a complete loss of capping activity. The alpha tentacle contributes more to capping affinity and kinetics; its removal reduces capping affinity by 5000-fold and the on-rate of capping by 20-fold. In contrast, removal of the beta tentacle reduced the affinity by only 300-fold and did not affect the on-rate. These two regions are not close to each other in the three-dimensional structure, suggesting CP uses two independent actin binding tentacles to cap the barbed end. CP with either tentacle alone can cap, as can the isolated beta tentacle alone, suggesting that the individual tentacles interact with more than one actin subunit at a subunit interface at the barbed end.  相似文献   

11.
Integrin receptors are crucial players in cell adhesion and migration. Identification and characterization of cellular proteins that interact with their short alpha and beta cytoplasmic tails will help to elucidate the molecular mechanisms by which integrins mediate bi-directional signaling across the plasma membrane. Integrin alpha2beta1 is a major collagen receptor but to date, only few proteins have been shown to interact with the alpha2 cytoplasmic tail or with the alpha2beta1 complex. In order to identify novel binding partners of a alpha2beta1cytoplasmic domain complex, we have generated recombinant GST-fusion proteins, incorporating the leucine zipper heterodimerization cassettes of Jun and Fos. To ascertain proper functionality of the recombinant proteins, interaction with natural binding partners was tested. GST-alpha2 and GST-Jun alpha2 bound His-tagged calreticulin while GST-beta1 and GST-Fos beta1 proteins bound talin. In screening assays for novel binding partners, the immobilized GST-Jun alpha2/GST-Fos beta1 heterodimeric complex, but not the single subunits, interacted specifically with endothelial cell-derived vimentin. Vimentin, an abundant intermediate filament protein, has previously been shown to co-localize with alphavbeta3-positive focal contacts. Here, we provide evidence that this interaction also occurs with alpha2beta1-enriched focal adhesions and we further show that this association is lost after prolonged adhesion of endothelial cells to collagen.  相似文献   

12.
We cloned and analyzed two genes, cap-1 and cap-2, which encode the alpha and beta subunits of Caenorhabditis elegans capping protein (CP). The nematode CP subunits are 55% (cap-1) and 66% (cap-2) identical to the chicken CP subunits and 32% (cap-1) and 48% (cap-2) identical to the yeast CP subunits. Purified nematode CP made by expression of both subunits in yeast is functionally similar to chicken skeletal muscle CP in two different actin polymerization assays. The abnormal cell morphology and disorganized actin cytoskeleton of yeast CP null mutants are restored to wild-type by expression of the nematode CP subunits. Expression of the nematode CP alpha or beta subunit is sufficient to restore viability to yeast cap1 sac6 or cap2 sac6 double mutants, respectively. Therefore, despite evolution of the nematode actin cytoskeleton to a state far more complex than that of yeast, one important component can function in both organisms.  相似文献   

13.
V-1 is a 12-kDa protein consisting of three consecutive ANK repeats, which are believed to serve as the surface for protein-protein interactions. It is thought to have a role in neural development for its temporal profile of expression during murine cerebellar development, but its precise role remains unknown. Here we applied the proteomic approach to search for protein targets that interact with V-1. The V-1 cDNA attached with a tandem affinity purification tag was expressed in the cultured 293T cells, and the protein complex formed within the cells were captured and characterized by mass spectrometry. We detected two polypeptides specifically associated with V-1, which were identified as the alpha and beta subunits of the capping protein (CP, alternatively called CapZ or beta-actinin). CP regulates actin polymerization by capping the barbed end of the actin filament. The V-1.CP complex was detected not only in cultured cells transfected with the V-1 cDNA but also endogenously in cells as well as in murine cerebellar extracts. An analysis of the V-1/CP interaction by surface plasmon resonance spectroscopy showed that V-1 formed a stable complex with the CP heterodimer with a dissociation constant of 1.2 x 10(-7) m and a molecular stoichiometry of approximately 1:1. In addition, V-1 inhibited the CP-regulated actin polymerization in vitro in a dose-dependent manner. Thus, our results suggest that V-1 is a novel component that regulates the dynamics of actin polymerization by interacting with CP and thereby participates in a variety of cellular processes such as actin-driven cell movements and motility during neuronal development.  相似文献   

14.
In eukaryotic cells, actin filaments play various crucial roles by altering their spatial and temporal distributions in the cell. The distribution of actin filaments is regulated by the binding of end-binding proteins, including capping protein (CapZ in muscle), the Arp2/3 complex, gelsolin, formin and tropomodulin, to the end of the actin filament. In order to determine the nature of these regulations, structural elucidations of actin filament-end-binding protein complexes are crucially important. Here, we have developed new procedures on the basis of single-particle analysis to determine the structure of the end of actin filaments from electron micrographs. In these procedures, the polarity of the actin filament image, as well as the azimuth orientation and the axial position of each actin protomer within a short stretch near the filament end, were determined accurately. This improved both the stability and accuracy of the structural determination dramatically. We tested our procedures by reconstructing structures from simulated filament images, which were obtained from 24 model structures for the actin-CapZ complex. These model structures were generated by random docking of the atomic structure of CapZ to the barbed end of an atomic model of the actin filament. Of the 24 model structures, 23 were recovered correctly by the present procedures. We found that our analysis was robust against local aberrations of the helical twist near the end of the actin filament. Finally, the procedures were applied successfully to determine the structure of the actin-CapZ complex from real cryo-electron micrographs of the complex. This is the first method for elucidating the detailed 3D structures at the end of the actin filament.  相似文献   

15.
Phosphorylase kinase has been purified from white and red chicken skeletal muscle to near homogeneity, as judged by sodium dodecyl sulphate (SDS) gel electrophoresis. The molecular mass of the native enzyme, estimated by chromatography on Sepharose 4B, is similar to that of rabbit skeletal muscle phosphorylase kinase, i.e. 1320 kDa. The purified enzyme both from white and red muscles showed four subunits upon polyacrylamide gel electrophoresis in the presence of SDS, corresponding to alpha', beta, gamma' and delta with molecular masses of 140 kDa, 129 kDa, 44 kDa and 17 kDa respectively. Based on the molecular mass of 1320 kDa for the native enzyme and on the molar ratio of subunits as estimated from densitometric tracings of the polyacrylamide gels, a subunit formula (alpha' beta gamma' delta)4 has been proposed. The antiserum against the mixture of the alpha' and beta subunits of chicken phosphorylase kinase gave a single precipitin line with the chicken enzyme but did not cross-react with the rabbit skeletal muscle phosphorylase kinase. The pH 6.8/8.2 activity ratio of phosphorylase kinase from chicken skeletal muscle varied from 0.3 to 0.5 for different preparations of the enzyme. Chicken phosphorylase kinase could utilize rabbit phosphorylase b as a substrate with an apparent Km value of 0.02 mM at pH 8.2. The apparent V (18 mumol min-1 mg-1) and Km values for ATP at pH 8.2 (0.20 mM) were of the same order of magnitude as that of the purified rabbit phosphorylase kinase b. The activity of chicken phosphorylase kinase was largely dependent on Ca2+. The chicken enzyme was activated 2-4-fold by calmodulin and troponin C, with concentrations for half-maximal activation of 2 nM and 0.1 microM respectively. Phosphorylation with the catalytic subunit of cAMP-dependent protein kinase (up to 2 mol 32P/mol alpha beta gamma delta monomer) and autophosphorylation (up to 8 mol 32P/mol alpha beta gamma delta monomer) increased the activity 1.5-fold and 2-fold respectively. Limited tryptic and chymotryptic hydrolysis of chicken phosphorylase kinase stimulated its activity 2-fold. Electrophoretic analysis of the products of proteolytic attack suggests some differences in the structure of the rabbit and chicken gamma subunits and some similarities in the structure of the rabbit red muscle and chicken alpha'.  相似文献   

16.
17.
The precise regulation of actin filament polymerization and depolymerization is essential for many cellular processes and is choreographed by a multitude of actin-binding proteins (ABPs). In higher plants the number of well characterized ABPs is quite limited, and some evidence points to significant differences in the biochemical properties of apparently conserved proteins. Here we provide the first evidence for the existence and biochemical properties of a heterodimeric capping protein from Arabidopsis thaliana (AtCP). The purified recombinant protein binds to actin filament barbed ends with Kd values of 12-24 nM, as assayed both kinetically and at steady state. AtCP prevents the addition of profilin actin to barbed ends during a seeded elongation reaction and suppresses dilution-mediated depolymerization. It does not, however, sever actin filaments and does not have a preference for the source of actin. During assembly from Mg-ATP-actin monomers, AtCP eliminates the initial lag period for actin polymerization and increases the maximum rate of polymerization. Indeed, the efficiency of actin nucleation of 0.042 pointed ends created per AtCP polypeptide compares favorably with mouse CapZ, which has a maximal nucleation of 0.17 pointed ends per CapZ polypeptide. AtCP activity is not affected by calcium but is sensitive to phosphatidylinositol 4,5-bisphosphate. We propose that AtCP is a major regulator of actin dynamics in plant cells that, together with abundant profilin, is responsible for maintaining a large pool of actin subunits and a surprisingly small population of F-actin.  相似文献   

18.
The ability of protein 4.1 to stimulate the binding of spectrin to F-actin has been compared by cosedimentation analysis for three avian (erythrocyte, brain, and brush border) and two mammalian (erythrocyte and brain) spectrin isoforms. Human erythroid protein 4.1 stimulated actin binding of all spectrins except the brush border isoform (TW 260/240). These results suggested that the beta subunit determined the protein 4.1 sensitivity of the heterodimer, since all avian alpha subunits are encoded by a single gene. Tissue-specific posttranslational modification of the alpha subunit was excluded by examining the properties of hybrid spectrins composed of the purified alpha subunit from avian erythrocyte or brush border spectrin and the beta subunit of human erythrocyte spectrin. A hybrid composed of avian brush border alpha and human erythroid beta spectrin ran on nondenaturing gels as a discrete band, migrating near human erythroid spectrin tetramers. The actin-binding activity of this hybrid was stimulated by protein 4.1, while either chain alone was devoid of activity. Therefore, although both subunits were required for actin binding, the sensitivity of the spectrin-actin interaction to protein 4.1 is a property uniquely bestowed on the heterodimer by the beta subunit. The singular insensitivity of brush border spectrin to stimulation by erythroid protein 4.1 was also consistent with the absence of proteins in avian intestinal epithelial cells which were immunoreactive with polyclonal antisera sensitive to all of the known avian and human erythroid 4.1 isoforms.  相似文献   

19.
Platelets transform from disks to irregular spheres, grow filopodia, form ruffles, and spread on surfaces coated with anti-FcRIIA antibody. FcRIIA cross-linking leads to a tenfold increase in actin filament barbed end exposure and robust actin assembly. Activation of the small GTPases Rac and Cdc42 follows FcRIIA cross-linking. Shape change, actin filament barbed end exposure, and quantifiable actin assembly require phosphoinositide 3-kinase (PI3-kinase) activity and a rise in intracellular calcium. PI3-kinase inhibition blocks activation of Rac, but not of Cdc42, and diminishes the association of Arp2/3 complex and CapZ with polymerized actin. Furthermore, addition of constitutively active D-3 phosphorylated polyphosphoinositides or recombinant PI3-kinase subunits to octylglucoside-permeabilized platelets elicits actin filament barbed end exposure by releasing gelsolin and CapZ from the cytoskeleton. Our findings place PI3-kinase activity upstream of Rac, gelsolin, and Arp2/3 complex activation induced by FcRIIA and clearly distinguish the FcRIIA signaling pathway to actin filament assembly from the thrombin receptor protease-activated receptor (PAR)-1 pathway. actin assembly; CD32A  相似文献   

20.
A "minispectrin" has been constructed from the tail end of the alpha/beta heterodimer, and its actin-binding properties have been characterised. It is a complex of the N-terminal fragment of the beta-subunit consisting of the actin-binding domain plus the two first triple-helical repeats beta 1 and beta 2, and the C-terminal fragment of the alpha-subunit containing the repeats alpha 19 and alpha 20 plus the calmodulin-like domain. This minispectrin exists in a dimeric form that contains one copy of each polypeptide and binds to actin in a cooperative manner with an apparent K(d) of 2.5 microM. Calcium seems not to have any effect on its binding to actin. Electron microscopic analysis shows that the minispectrin decorates actin filaments as clusters, and induces formation of actin bundles. This study shows that the actin-binding region of the spectrin alpha/beta heterodimer retains its functional properties in a truncated form and establishes basis for further research on spectrin's structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号