首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods are described to correlate aromatic 1H 2/13C 2 or 1H 1/15N 1 with aliphatic 13C chemical shifts of histidine and tryptophan residues, respectively. The pulse sequences exclusively rely on magnetization transfers via one-bond scalar couplings and employ [15N, 1H]- and/or [13C, 1H]-TROSY schemes to enhance sensitivity. In the case of histidine imidazole rings exhibiting slow HN-exchange with the solvent, connectivities of these proton resonances with -carbons can be established as well. In addition, their correlations to ring carbons can be detected in a simple [15N, 1H]-TROSY-H(N)Car experiment, revealing the tautomeric state of the neutral ring system. The novel methods are demonstrated with the 23-kDa protein xylanase and the 35-kDa protein diisopropylfluorophosphatase, providing nearly complete sequence-specific resonance assignments of their histidine -CH and tryptophan -NH groups.  相似文献   

2.
Recently we have shown that HMQC spectra of protonated methyl groups in high molecular weight, highly deuterated proteins have large enhancements in sensitivity and resolution relative to HSQC-generated data sets. These enhancements derive from a TROSY effect in which complete cancellation of intra-methyl (1)H-(1)H and (1)H-(13)C dipolar interactions occurs for 50% of the signal in the case of HMQC, so long as the methyl is attached to a molecule tumbling in the macromolecular limit (Tugarinov, V., Hwang, P.M., Ollerenshaw, J.E., Kay, L.E. J. Am. Chem. Soc. (2003) 125, 10420-10428; Ollerenshaw, J.E., Tugarinov, V. and Kay, L.E. Magn. Reson. Chem. (2003) 41, 843-852. The first demonstration of this effect was made for isoleucine delta1 methyl groups in a highly deuterated 82 kDa protein, malate synthase G. As with (1)H-(15)N TROSY spectroscopy high levels of deuteration are critical for maximizing the TROSY effect. Here we show that excellent quality methyl TROSY spectra can be recorded on U-[(2)H] Iledelta1-[(13)CH(3)] Leu,Val-[(13)CH(3)/(12)CD(3)] protein samples, significantly extending the number of probes available for structural and dynamic studies of high molecular weight systems.  相似文献   

3.
A 4D TROSY-based triple resonance experiment, 4D-HNCOi–1CAi, is presented which correlates intra-residue 1HN, 15N, 13 C chemical shifts with the carbonyl (13C) shift of the preceding residue. The experiment is best used in concert with recently described 4D TROSY-HNCOCA and -HNCACO experiments [Yang, D. and Kay, L.E. (1999) J. Am. Chem. Soc., 121, 2571–2575]. In cases where degeneracy of (1HN,15N) spin pairs precludes assignment using the HNCOCA and HNCACO, the HNCOi–1CAi often allows resolution of the ambiguity by linking the 13C and 13C spins surrounding the (1HN,15N) pair. The experiment is demonstrated on a sample of 15N, 13C, 2 H labeled maltose binding protein in complex with -cyclodextrin that tumbles with a correlation time of 46 ns.  相似文献   

4.
    
Dimethylsulfoxide (DMSO)‐quenched hydrogen/deuterium (H/D)‐exchange is a powerful method to characterize the H/D‐exchange behaviors of proteins and protein assemblies, and it is potentially useful for investigating non‐protected fast‐exchanging amide protons in the unfolded state. However, the method has not been used for studies on fully unfolded proteins in a concentrated denaturant or protein solutions at high salt concentrations. In all of the current DMSO‐quenched H/D‐exchange studies of proteins so far reported, lyophilization was used to remove D2O from the protein solution, and the lyophilized protein was dissolved in the DMSO solution to quench the H/D exchange reactions and to measure the amide proton signals by two‐dimensional nuclear magnetic resonance (2D NMR) spectra. The denaturants or salts remaining after lyophilization thus prevent the measurement of good NMR spectra. In this article, we report that the use of spin desalting columns is a very effective alternative to lyophilization for the medium exchange from the D2O buffer to the DMSO solution. We show that the medium exchange by a spin desalting column takes only about 10 min in contrast to an overnight length of time required for lyophilization, and that the use of spin desalting columns has made it possible to monitor the H/D‐exchange behavior of a fully unfolded protein in a concentrated denaturant. We report the results of unfolded ubiquitin in 6.0M guanidinium chloride.  相似文献   

5.
6.
A strategy for the introduction of (1H,13C-methyl)-alanine into perdeuterated proteins is described. Specific protonation of alanine methyl groups to a level of 95% can be achieved by overexpressing proteins in M9/D2O based bacterial growth medium supplemented with 800 mg/l of 2-[2H], 3-[13C] l-alanine. However, though simple, this approach results in undesired, non-specific background labeling due to isotope scrambling via different amino acid metabolic pathways. Following a careful analysis of known metabolic pathways we found that co-addition of perdeuterated forms of α-ketoisovalerate-d7, succinate-d4 and l-isoleucine-d10 with labeled l-alanine, reduces undesired background labeling to <1%. When combined with recently developed methyl TROSY experiments, this methyl-specific labeling protocol permits the acquisition of excellent quality correlation spectra of alanine methyl groups in high molecular weight proteins. Our cost effective strategy offers a significant enhancement in the level of incorporation of methyl-labeled alanine in overexpressed proteins over previously reported methods. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
A TROSY-based triple-resonance pulse scheme is described which correlates backbone 1H and 15N chemical shifts of an amino acid residue with the 15N chemical shifts of both the sequentially preceding and following residues. The sequence employs 1 J NC and 2 J NC couplings in two sequential magnetization transfer steps in an `out-and-back' manner. As a result, N,N connectivities are obtained irrespective of whether the neighbouring amide nitrogens are protonated or not, which makes the experiment suitable for the assignment of proline resonances. Two different three-dimensional variants of the pulse sequence are presented which differ in sensitivity and resolution to be achieved in one of the nitrogen dimensions. The new method is demonstrated with two uniformly 2H/13C/15N-labelled proteins in the 30-kDa range.  相似文献   

8.
9.
    
A database of hydrogen-deuterium exchange results has been compiled for proteins for which there are published rates of out-exchange in the native state, protection against exchange during folding, and out-exchange in partially folded forms. The question of whether the slow exchange core is the folding core (Woodward C, 1993, Trends Biochem Sci 18:359-360) is reexamined in a detailed comparison of the specific amide protons (NHs) and the elements of secondary structure on which they are located. For each pulsed exchange or competition experiment, probe NHs are shown explicitly; the large number and broad distribution of probe NHs support the validity of comparing out-exchange with pulsed-exchange/competition experiments. There is a strong tendency for the same elements of secondary structure to carry NHs most protected in the native state, NHs first protected during folding, and NHs most protected in partially folded species. There is not a one-to-one correspondence of individual NHs. Proteins for which there are published data for native state out-exchange and theta values are also reviewed. The elements of secondary structure containing the slowest exchanging NHs in native proteins tend to contain side chains with high theta values or be connected to a turn/loop with high theta values. A definition for a protein core is proposed, and the implications for protein folding are discussed. Apparently, during folding and in the native state, nonlocal interactions between core sequences are favored more than other possible nonlocal interactions. Other studies of partially folded bovine pancreatic trypsin inhibitor (Barbar E, Barany G, Woodward C, 1995, Biochemistry 34:11423-11434; Barber E, Hare M, Daragan V, Barany G, Woodward C, 1998, Biochemistry 37:7822-7833), suggest that developing cores have site-specific energy barriers between microstates, one disordered, and the other(s) more ordered.  相似文献   

10.
    
A difference in the neutron scattering length between hydrogen and deuterium leads to a high density contrast in neutron Fourier maps. In this study, a technique for determining the deuterium/hydrogen (D/H) contrast map in neutron macromolecular crystallography is developed and evaluated using ribonuclease A. The contrast map between the D2O‐solvent and H2O‐solvent crystals is calculated in real space, rather than in reciprocal space as performed in previous neutron D/H contrast crystallography. The present technique can thus utilize all of the amplitudes of the neutron structure factors for both D2O‐solvent and H2O‐solvent crystals. The neutron D/H contrast maps clearly demonstrate the powerful detectability of H/D exchange in proteins. In fact, alternative protonation states and alternative conformations of hydroxyl groups are observed at medium resolution (1.8 Å). Moreover, water molecules can be categorized into three types according to their tendency towards rotational disorder. These results directly indicate improvement in the neutron crystal structure analysis. This technique is suitable for incorporation into the standard structure‐determination process used in neutron protein crystallography; consequently, more precise and efficient determination of the D‐atom positions is possible using a combination of this D/H contrast technique and standard neutron structure‐determination protocols.  相似文献   

11.
Amyloid fibril elongation in denatured proteins involves cycles of coupled binding and misfolding. To gain insights into possible kinetic intermediates, we performed hydrogen/deuterium exchange of amide protons during fibril elongation with β2-microglobulin (β2-m) at p= 2.5, under which conditions β2-m is acid denatured. To study the conformational change in monomeric β2-m monitored by NMR spectroscopy, we used 15N-labeled monomers and nonlabeled seeds. Pulse-labeling hydrogen/deuterium exchange with a quenched-flow apparatus indicated that the rate-limiting intermediate at p= 2.5 is not protected from the exchange, even disrupting a hydrophobic cluster present in the acid-denatured β2-m. Significant protection was acquired upon transition to the fibrils. In view of the suggestion that the rate-limiting intermediates are bound to the lateral surface of seed fibrils, weak interactions with a largely unfolded conformation might be useful for their dynamic sliding to the growing ends. The results support a new model of fibril elongation with intermediates bound to the lateral surface of seeds.  相似文献   

12.
13.
14.
NMR investigations of larger macromolecules (>20 kDa) are severely hindered by rapid 1H and 13C transverse relaxation. Replacement of non-exchangeable protons with deuterium removes many efficient 1H-1H and 1H-13C relaxation pathways. The main disadvantage of deuteration is that many of the protons which would normally be the source of NOE-based distance restraints are removed. We report the development of a novel labeling strategy which is based on specific protonation and 14N-labeling of the residues phenylalanine, tyrosine, threonine, isoleucine and valine in a fully deuterated, 15N-labeled background. This allows the application of heteronuclear half-filters, 15N-editing and 1H-TOCSY experiments to select for particular magnetization transfer pathways. Results from investigations of a 47 kDa dimeric protein labeled in this way demonstrated that the method provides useful information for the structure determination of large proteins.  相似文献   

15.
The ruthenium(II) hexaaqua complex [Ru(H2O)6]2+ reacts with dihydrogen under pressure to give the η2-dihydrogen ruthenium(II) pentaaqua complex [Ru(H2)(H2O)5]2+.The complex was characterized by 1H, 2H and 17O NMR: δH = −7.65 ppm, JHD = 31.2 Hz, δO = −80.4 ppm (trans to H2) and δO = −177.4 ppm (cis to H2).The H-H distance in coordinated dihydrogen was estimated to 0.889 Å from JHD, which is close to the value obtained from DFT calculations (0.940 Å).Kinetic studies were performed by 1H and 2H NMR as well as by UV-Vis spectroscopy, yielding the complex formation rate and equilibrium constants: kf = (1.7 ± 0.2) × 10−3 kg mol−1 s−1 and Keq = 4.0 ± 0.5 mol kg−1.The complex formation rate with dihydrogen is close to values reported for other ligands and thus it is assumed that the reaction with dihydrogen follows the same mechanisn (Id).In deuterated water, one can observe that [Ru(H2)(H2O)5]2+ catalyses the hydrogen exchange between the solvent and the dissolved dihydrogen.A hydride is proposed as the intermediate for this exchange.Using isotope labeling, the rate constant for the hydrogen exchange on the η2-dihydrogen ligand was determined as k1 = (0.24 ± 0.04) × 10−3 s−1.The upper and lower limits of the pKa of the coordinated dihydrogen ligand have been estimated:3 < pKa < 14.  相似文献   

16.
Deuterium NMR spectroscopy was used to study internal motions of a deuterium-labeled single tryptophan (Trp) residue (per subunit) of Streptomyces subtilisin inhibitor (SSI) in solution. The free inhibitor with the five ring protons of the Trp replaced with deuterons showed a narrow resonance component (56 Hz) of about one-quarter of the total intensity, in addition to the broad resonance component (about 600 Hz) at 25 degrees C, showing that it exits in an equilibrium mixture of two conformers, in one of which the tryptophan side chain is highly mobile. In analogy to the two structures of SSI found in the crystal, these two conformers were attributed to the one in which the contact between the alpha-lobe and the beta-lobe of the subunit is tight and the other in which the same contact is loose. When SSI forms a complex with subtilisin BPN', the broad component becomes invisibly broad, but the narrow component increases with even further narrowing, suggesting that the binding to the enzyme favors the "loose" conformer over the "tight" conformer.  相似文献   

17.
    
We recently reported on a new H/D exchange- and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry-based technique, termed SUPREX, that removes several important limitations associated with measuring the thermodynamic stability of proteins. In contrast to conventional spectroscopy-based techniques for characterizing the equilibrium unfolding behavior of proteins, SUPREX is amenable to the thermodynamic analysis of both purified and unpurified proteins using mg to ng quantities of material. Here we report on the application of SUPREX to the analysis of multimeric protein systems. Included in this work are the SUPREX results we obtained in studies on six model multimeric proteins including the GCN4p1 dimer, the coil-V(a)L(d) trimer, the 4-oxalocrotonate tautomerase (4-OT) hexamer, the Trp repressor (TrpR) dimer, the Arc repressor (ArcR) dimer, and an ArcR mutant (the (DOA20)ArcR) dimer which contained two destabilizing mutations including an Asp to Ala mutation at position 20 and an amide to ester bond mutation between amino acid (aa) residues 19 and 20. As part of the work described here, we present a new method for the analysis of SUPREX data that is generally applicable to both monomeric and multimeric protein systems. Our results on the model proteins in this study indicate that this new method can be used to determine folding free energies for proteins with the accuracy and precision of conventional spectroscopy-based methods.  相似文献   

18.
    
The correct positions of the deuterium (D) atoms of many of the bound waters in the protein concanavalin A are revealed by neutron Laue diffraction. The approach includes cases where these water D atoms show enough mobility to render them invisible even to ultra‐high resolution synchrotron‐radiation X‐ray crystallography. The positions of the bound water H atoms calculated on the basis of chemical and energetic considerations are often incorrect. The D‐atom positions for the water molecules in the Mn‐, Ca‐ and sugar‐binding sites of concanavalin A are described in detail.  相似文献   

19.
    
The H/D exchange catalysis using the Ir(I) complex [TpMe2Ir(η4-2,3-dimethylbutadiene)] (TpMe2=hydridotris(3,5-dimethylpyrazolyl)borate) as the precatalyst was studied for selective deuteration of norbornene derivatives. In dependence of the norbornene substitution in 2,3 positions, selective deuteration of the norbornene double bond could be achieved. (±)-endo,exo-6-Deutero-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid diethyl ester was isolated in 82% yield.  相似文献   

20.
    
The room‐temperature (RT) X‐ray structure of H/D‐exchanged crambin is reported at 0.85 Å resolution. As one of the very few proteins refined with anisotropic atomic displacement parameters at two temperatures, the dynamics of atoms in the RT and 100 K structures are compared. Neutron diffraction data from an H/D‐exchanged crambin crystal collected at the Protein Crystallography Station (PCS) showed diffraction beyond 1.1 Å resolution. This is the highest resolution neutron diffraction reported to date for a protein crystal and will reveal important details of the anisotropic motions of H and D atoms in protein structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号