首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Human CG contains an alpha-subunit, common to the pituitary glycoprotein hormones, and a hormone-specific beta-subunit, but unlike the pituitary beta-subunits, hCG beta is characterized by an O-glycosylated carboxy-terminal extension. A mutant beta-subunit, des-(122-145)hCG beta, was prepared using site-directed mutagenesis, and the pRSV expression plasmids were transfected into Chinese hamster ovary cells that produce the bovine alpha-subunit (b alpha). The mutant beta-subunit binds to b alpha, and the heterologous gonadotropin, b alpha-des-(122-145)hCG beta, was capable of stimulating steroidogenesis in cultured Leydig tumor cells (MA-10) to the same extent as standard hCG. When compared with the heterologous gonadotropin, b alpha-hCG beta wild type, the hybrid hormone with the truncated hCG beta exhibited equal potency, within the accuracy of the RIAs used to determine hormone concentrations, and gave a similar time course of steroidogenesis. Interestingly, these transformed Leydig cells do not distinguish between the steroidogenic potencies (as measured by progesterone production) of hCG and human LH (hLH) as do some preparations of normal rodent Leydig cells (as measured by testosterone production). However, the MA-10 cells were able to distinguish hCG from hLH based on their cAMP response; the latter produced a greater response at both maximal and submaximal gonadotropin concentrations. The two expressed heterologous gonadotropins were equipotent in their abilities to stimulate cAMP and gave similar time courses of cAMP accumulation in MA-10 cells. Thus, the carboxy-terminal extension of hCG beta is not required for association with the alpha-subunit nor for functional receptor binding, as judged by cAMP accumulation and progesterone production in MA-10 cells.  相似文献   

2.
Porcine cultured Leydig cells (LC) lose hCG receptors and hCG responsiveness (cAMP and testosterone) when they are cultured for three days in a defined medium without insulin or somatomedin C (Sm-C) (Insulin-like growth factor I). In the presence of insulin (50 ng/ml) or of Sm-C (10 ng/ml) the loss of the hCG receptor number and the decreased cAMP response to hCG were prevented, but the steroidogenic response to hCG was only partially prevented. This parameter became normal when cells were pretreated with either Sm-C (10 ng/ml) plus insulin (50 ng/ml) or with insulin alone at high concentrations (5 micrograms/ml). These results indicate that both Sm-C and insulin acting through their own receptors increase Leydig cell steroidogenic capacity by increasing hCG receptor number and improving some step beyond cAMP formation.  相似文献   

3.
L R Chaudhary  D M Stocco 《Biochimie》1988,70(12):1799-1806
Using a cloned Leydig tumor cell line (designated MA-10), we have studied the activity of cholesterol side-chain (CSCC) enzyme, the rate-determining step in steroidogenesis, in mitochondria isolated from cells pretreated either with human chorionic gonadotropin (hCG) or dibutyryl cyclic adenosine monophosphate (dbcAMP). Results showed a slight but significant increase in CSCC activity with treatment by cAMP (25% increase) and hCG (60% increase), as compared to mitochondria isolated from nontreated control cells. However, this stimulation of CSCC activity appears to be of limited significance when compared to the approximately 1000-fold or greater increase observed in progesterone production in the presence of hCG or dbcAMP. On the other hand, unstimulated MA-10 cells or isolated mitochondria efficiently converted 25-hydroxycholesterol and 22R-hydroxycholesterol into progesterone, and this conversion was not affected by cycloheximide. The addition of cholesterol to intact cells or to isolated mitochondria did not affect progesterone production. Our observations clearly indicate that given the proper hydroxy substrates (22R-hydroxycholesterol or 25-hydroxycholesterol), MA-10 Leydig cells are able to convert them into progesterone without any stimulation by steroidogenic stimuli, i.e. cAMP or hCG. Since MA-10 Leydig cells can efficiently convert 22R-hydroxycholesterol--an intermediate in CSCC reaction--into progesterone, these results suggest that the key regulatory step in the mechanism of trophic hormone-stimulated steroid production is the first hydroxylation step of the 3 sequential monooxygenation reactions involved in the conversion of cholesterol to pregnenolone.  相似文献   

4.
The essential interactions between cAMP and the yeast low Km cAMP-phosphodiesterase have been analyzed using cAMP analogues and phosphodiesterase inhibitors. cAMP specificity is conferred by hydrogen bonding at the N-6 and N-7 positions. In contrast to the other yeast phosphodiesterase, (Rp)-adenosine 3',5'-monophosphorothioate is not hydrolyzed. Eleven standard phosphodiesterase inhibitors were not highly effective. In Chinese hamster ovary (CHO) cells that express the yeast cAMP-phosphodiesterase (PDE2) gene, cAMP levels cannot be raised by cholera toxin. cAMP analogues that are efficiently hydrolyzed by the yeast cAMP-phosphodiesterase had no effect on the growth of CHO cells that express the PDE2 gene, even though they block the growth and alter the morphology of control cells. cAMP analogues that are not hydrolyzed by the yeast enzyme inhibited the growth and changed the morphology of both control and PDE2 expressing CHO cells. We have developed a method for creating cell lines in which cAMP levels can be reduced by expression of an exogenous cAMP-phosphodiesterase gene. By employing cAMP analogues that are not hydrolyzed by this phosphodiesterase, the inhibitory effects of the enzyme can be bypassed.  相似文献   

5.
Numerous studies have indicated that treatment of Leydig cells with gonadotropin results in increased levels of intracellular cAMP, binding of cAMP to and activation of protein kinase A, phosphorylation of proteins, synthesis of new proteins and eventually, stimulation of steroidogenesis. In addition, recent studies have indicated that protein phosphorylation is an indispensable event in the production of steroids in response to hormone stimulation in adrenal cells. Because of the important role of phosphorylation in steroidogenic regulation, we investigated the effects of human chorionic gonadotropin (hCG), dibutyryl cyclic AMP (dbcAMP), forskolin and the phorbol ester, phorbol-12-myristate 13-acetate (PMA) on protein phosphorylation in MA-10 mouse Leydig tumor cells. Cells were stimulated with different steroidogenic compounds in the presence of [32P]orthophosphoric acid for 2 h and phosphoproteins analyzed by two-dimensional polyacrylamide gel-electrophoresis (PAGE). Results demonstrated an increase in the phosphorylation of four proteins (22 kDa, pI 5.9; 24 kDa, pI 6.7 and 30 kDa, pI 6.3 and 6.5) in response to 34 ng/ml hCG, 1 mM dbcAMP and 100 microM forskolin. Conversely, treatment of cells with PMA increased the phosphorylation of only one of these proteins (30 kDa, pI 6.3). At least two of these proteins (30 kDa, pI 6.5 and 6.3) appear to be identical to proteins which we and others have shown to be synthesized in response to trophic hormone stimulation in adrenal, luteal and Leydig cells. In addition, they also appear to be identical to adrenal cell mitochondrial proteins demonstrated to be phosphorylated in response to ACTH. These data indicate that proteins similar to those phosphorylated in adrenal cells in response to ACTH are phosphorylated in hormone stimulated testicular Leydig cells and that these proteins may be involved in steroidogenic regulation.  相似文献   

6.
The MA-10 line is a clonal strain of Leydig tumor cells that has receptors for human choriogonadotropin (hCG) and mouse epidermal growth factor (mEGF). These cells respond to hCG, cholera toxin, and 8-Br-adenosine 3':5'-monophosphate with increased steroid production. It is reported herein that exposure of the MA-10 cells to mEGF results in a substantial (80 to 90%) reduction in the number of hCG receptors per cell. The loss of hCG receptors is accompanied by a corresponding reduction in the ability of hCG to stimulate steroidogenesis. The steroidogenic responses to cholera toxin and 8-Br-adenosine 3':5'-monophosphate, however, are not affected. Other results presented show that mEGF is not a mitogen for these cells.  相似文献   

7.
Tremella mesenterica (TM), a yellow jelly mushroom, has been traditionally used as tonic food to improve body condition in Chinese society for a long time. We have previously demonstrated that TM reduced in vitro hCG-treated steroidogenesis in MA-10 mouse Leydig tumor cells without any toxicity effect. In the present study, the mechanism how TM suppressed hCG-treated steroidogenesis in MA-10 cells was investigated. MA-10 cells were treated with vehicle, human chorionic gonadotropin (hCG, 50 ng/ml), or different reagents with or without TM to clarify the effects. TM significantly suppressed progesterone production with the presences of forskolin (10 and 100 microM) or dbcAMP (0.5 and 1mM), respectively, in MA-10 cells (p<0.05), which indicated that TM suppressed steroidogenesis after PKA activation along the signal pathway. Beyond our expectation, TM induced the expression of steroidogenic acute regulatory (StAR) protein with or without hCG treatments. However, TM profoundly decreased P450 side chain cleavage (P450scc) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) enzyme activities without any influences on the expression of both enzymes. These inhibitions on steroidogenic enzyme activities might counteract the stimulation of StAR protein expression. In conclusion, results suggest that TM suppressed hCG-treated steroidogenesis in MA-10 cells by inhibiting PKA signal pathway and steroidogenic enzyme activities.  相似文献   

8.
9.
We have investigated the effects of insulin and somatomedin-C/insulinlike growth factor I(Sm-C) in purified porcine Leydig cells in vitro on gonadotrophins (hCG) receptor number, hCG responsiveness (cAMP and testosterone production), and thymidine incorporation into DNA. Leydig cells cultured in a serum-free medium containing transferrin, vitamin E, and insulin (5 micrograms/ml) maintained fairly constant both hCG receptors and hCG responsiveness. When they were cultured for 3 days in the same medium without insulin, there was a dramatic decline (more than 80%) in both hCG receptor number and hCG responsiveness. However the cAMP but not the testosterone response to forskolin was normal. Both insulin and Sm-C at nanomolar concentrations prevent the decline of both hCG receptors and hCG-induced cAMP production. This effect of both peptides was dose dependent with an ED50 of about 1 ng/ml and 5 ng/ml for SM-C and insulin, respectively. Insulin and Sm-C had no additive effect on these parameters. At nanomolar concentrations, Sm-C and insulin enhanced hCG-induced testosterone production but the effect of Sm-C was significantly higher than that of insulin. However, the effect of insulin at higher concentrations (5 micrograms/ml) was significantly higher than that of Sm-C at 50 ng/ml. In contrast, at nanomolar concentrations only Sm-C stimulated [3H]-thymidine incorporation into DNA and cell multiplication, the stimulatory effect of insulin on these parameters, was seen only at micromolar concentrations. These results indicate that both Sm-C and insulin acting through their own receptors increase Leydig cell steroidogenic responsiveness to hCG by increasing hCG receptor number and improving some step beyond cAMP formation. In contrast, the mitogenic effects of insulin are mediated only through Sm-C receptors.  相似文献   

10.
Expression and regulation of adrenodoxin and P450scc mRNA in rodent tissues   总被引:1,自引:0,他引:1  
The rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone. This reaction occurs in steroidogenic tissue in the inner mitochondrial membrane, and is mediated by the cholesterol side-chain cleavage enzyme. This enzyme system transfers electrons from NADPH to cholesterol through its three protein components: adrenodoxin reductase, adrenodoxin, and the terminal oxidase, P450scc. We have previously shown that P450scc mRNA is regulated by tropic hormones and cAMP by a cycloheximide-independent mechanism in mouse Leydig tumor MA-10 cells. We now show that the mRNA for adrenodoxin, another component of the cholesterol side-chain cleavage enzyme system, is regulated by tropic hormones and cAMP in MA-10 cells. We cloned rat adrenodoxin cDNA to analyze adrenodoxin mRNA in various rat tissues and in MA-10 cells by RNase protection assays. Adrenodoxin mRNA is found in virtually all rat tissues examined, although it is most abundant in adrenals, ovaries, and testes. MA-10 cells synthesize two species of adrenodoxin mRNA, one of 1.2 kb and the other of 0.8 kb. Both of these adrenodoxin mRNAs are increased approximately six-fold by 1 mM 8-Br-cAMP, five-fold by 10 microM forskolin, and three-fold by both 25 ng/ml hCG and by 100 ng/ml LH. Maximal adrenodoxin mRNA accumulation occurs by 4 h of hormonal stimulation. The cAMP-mediated increase in adrenodoxin mRNA accumulation is independent of protein synthesis, since treatment with cycloheximide or puromycin in the absence or presence of cAMP does not inhibit, and even increases, adrenodoxin mRNA accumulation.  相似文献   

11.
By using a model of immature porcine Leydig and Sertoli cells cultured in serum free defined medium, we evidenced a paracrine control of Leydig cell steroidogenic activity by Sertoli cells via a secreted inhibiting protein(s). This protein(s), partially purified using gel filtration (M.W. 20,000-30,000) suppresses the steroidogenic responsiveness to LH/hCG by decreasing the specific LH/hCG binding (52% decrease) and hormone steroid biosynthesis (73% decrease) at a level(s) located between cAMP production and pregnenolone formation. The suppression of this inhibitor(s) by FSH, in a dose dependent manner, is one mechanism by which FSH "sensitizes" Leydig cell response to LH/hCG stimulation.  相似文献   

12.
Cholesterol is the sole precursor of steroid hormones in the body. The import of cholesterol to the inner mitochondrial membrane, the rate-limiting step in steroid biosynthesis, relies on the formation of a protein complex that assembles at the outer mitochondrial membrane called the transduceosome. The transduceosome contains several mitochondrial and cytosolic components, including the steroidogenic acute regulatory protein (STAR). Human chorionic gonadotropin (hCG) induces de novo synthesis of STAR, a process shown to parallel maximal steroid production. In the hCG-dependent steroidogenic MA-10 mouse Leydig cell line, the 14-3-3γ protein was identified in native mitochondrial complexes by mass spectrometry and immunoblotting, and its levels increased in response to hCG treatment. The 14-3-3 proteins bind and regulate the activity of many proteins, acting via target protein activation, modification and localization. In MA-10 cells, cAMP induces 14-3-3γ expression parallel to STAR expression. Silencing of 14-3-3γ expression potentiates hormone-induced steroidogenesis. Binding motifs of 14-3-3γ were identified in components of the transduceosome, including STAR. Immunoprecipitation studies demonstrate a hormone-dependent interaction between 14-3-3γ and STAR that coincides with reduced 14-3-3γ homodimerization. The binding site of 14-3-3γ on STAR was identified to be Ser-194 in the STAR-related sterol binding lipid transfer (START) domain, the site phosphorylated in response to hCG. Taken together, these results demonstrate that 14-3-3γ negatively regulates steroidogenesis by binding to Ser-194 of STAR, thus keeping STAR in an unfolded state, unable to induce maximal steroidogenesis. Over time 14-3-3γ homodimerizes and dissociates from STAR, allowing this protein to induce maximal mitochondrial steroid formation.  相似文献   

13.
In previous studies we and others have described several mitochondrial proteins which are synthesized in response to acute hormone stimulation in several steroidogenic tissues. In both MA-10 mouse Leydig tumor cells and primary cultures of rat adrenal cortex cells, these proteins consist of a family of 37 kilodalton (kDa) and 32 kDa precursor forms and fully processed forms which are 30 kDa in molecular weight. The nature of the appearance of these proteins and their subcellular localization to the mitochondria, the site of the rate limiting step in steroidogenesis, has led to the speculation that they may be involved in the acute regulation of steroidogenesis. In the present study we have taken advantage of another steroidogenic cell, the R2C rat Leydig tumor cell, to perform studies which further indicate that these mitochondrial proteins are involved in the regulation of steroidogenesis. Unlike the MA-10 cell which requires hormone stimulation for steroid production, the R2C cell is a constitutive progesterone producer whose steroid production cannot be further increased with hormone stimulation. We have shown that the R2C cell line is less sensitive to the inhibition of steroid production by the metal chelator orthophenanthroline (OP) than is the MA-10 cell. We have demonstrated that progesterone production and the 30 kDa mitochondrial proteins remain present in the R2C cells at a concentration of OP which completely inhibits progesterone production and totally eliminates the 30 kDa proteins in MA-10 cells. As further evidence for the role of these proteins in steroidogenic regulation, we have isolated several revertants of the R2C parent (P) cell line which have lost the ability to synthesize progesterone constitutively, but which can be stimulated to synthesize this steroid by trophic hormone and cAMP analog. In these revertants, designated (R), the normally constitutively present 30 kDa proteins are greatly decreased compared to controls, but reappear in large amounts following hormone stimulation. Taken together, these data provide further evidence that the 30 kDa mitochondrial proteins are involved in the acute regulation of steroidogenesis in Leydig cells.  相似文献   

14.
A genomic DNA fragment from Saccharomyces cerevisiae which contains the SRA5 (=PDE2) gene, coding for a low Km cAMP-phosphodiesterase, was transfected into Chinese hamster ovary cells. Clones carring the cAMP-phosphodiesterase gene were capable of growth in the presence of cholera toxin, which slows the growth of untransfected cells by elevating their cAMP levels. The cholera toxin-resistant transfected cell lines expressed high levels of cAMP-phosphodiesterase mRNA and cAMP-phosphodiesterase activity. Basal intracellular cAMP levels were not significantly affected by the presence of the yeast cAMP-phosphodiesterase gene, but elevation of cAMP levels in response to cholera toxin or prostaglandin E1 was suppressed. Induction of the cAMP-responsive tyrosine aminotransferase promoter by cholera toxin was also blocked in cell lines carrying the yeast cAMP-phosphodiesterase gene. Cholera toxin-resistant transfected cell lines were sensitive to the growth inhibitory effects of N6,02'-dibutyryladenosine 3',5'-monophosphate, which can be used to bypass the effects of the yeast cAMP-phosphodiesterase.  相似文献   

15.
Highly steroidogenic granulosa cell lines were established by transfection of primary granulosa cells from preovulatory follicles with SV40 DNA and Ha-ras oncogene. Progesterone production in these cells was enhanced to levels comparable to normal steroidogenic cells, by prolonged (> 12 h) stimulation with 8-Br-cAMP, forskolin and cholera toxin, which elevate intracellular cAMP. The steroidogenic capacity of individual lines correlated with the expression of the ras oncogene product (p21) and the morphology of the cells. Formation of the steroid hormones was associated with de novo synthesis of the mitochondrial cytochrome P450scc system proteins. Since cholesterol import into mitochondria is essential for steroidogenesis, the expression of the peripheral benzodiazepine receptor (PBR) and the sterol carrier protein 2 was characterized in these cells. The induction of the expression of the genes coding for both proteins appeared to be mediated, at least in part, by cAMP. Stimulation of the PBR by specific agonists enhanced progesterone production in these cells. The phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate (TPA) dramatically suppressed the cAMP-induced steroidogenesis, in spite of enhanced intracellular cAMP levels, suggesting that TPA can modify the effects of cAMP. cAMP stimulation suppressed growth of transformed cells concomitantly with induction of steroidogenesis. The transformed cells lacked receptors for the native stimulants, the gonadotropic hormones. After transfection of the cells with a lutropin (LH) receptor expression plasmid, the LH and hCG response was reconstituted. In these newly established cell lines gonadotropins were able to stimulate the formation of cAMP and progesterone in a dose-dependent manner with an ED50 characteristic of the native receptor. High doses caused desensitization to gonadotropins as observed in normal cells. These newly established oncogene-transformed granulosa cell lines can serve as a useful model to study inducible steroidogenesis and the effect of oncogene expression on this process.  相似文献   

16.
Utilizing a clonal cell line of mouse testicular Leydig cells (MA-10 cells) the complete steroidogenic and other hormonal properties of chemically deglycosylated ovine lutropin (DG-LH) and human choriogonadotropin (DG-hCG) were evaluated. In these cells, with the LH receptor-steroidogenic mechanism tightly coupled and in which there are few, if any, spare receptors, both DG-LH and DG-hCG failed to elicit progesterone production, unlike fully glycosylated native LH and hCG. The receptor-binding activity of DG-LH and DG-hCG was 2-3 times that of LH and hCG in competition experiments with radiolabelled hormones. The typical phenomenon of rounding of MA-10 cells induced by LH and hCG was absent when cells were incubated with DG-LH or DG-hCG. This could be directly attributable to their failure to produce cyclic AMP as second messenger. DG-LH and DG-hCG inhibited cell shape changes and steroidogenesis caused by LH and hCG. The deglycosylated hormones were potent antagonists of the action of glycosylated hormones. Delaying DG-hCG (antagonist) addition for up to 1 h after initiation of hCG action was also very effective in preventing further activation of steroidogenesis. Similar effects were produced by addition of affinity-purified anti-hCG antibodies. In affinity cross-linking experiments, both hCG and DG-hCG bound to the same 90 kDa receptor. Studies with MA-10 cells thus provide unequivocal evidence that the presence of antennary sugars in LH and hCG (and perhaps in other similar hormones such as follicle-stimulating hormone and thyroid-stimulating hormone), is essential for signal transduction. Differences observed in the literature in other cellular systems may be attributed to differences in hormone-receptor-effector coupling.  相似文献   

17.
18.
We have recently succeeded in immortalizing rat granulosa cells by co- transfection with SV-40 DNA and the Ha-ras oncogene. These cells lost their response to gonadotropins, but expressed the cytochrome P450scc mitochondrial system enzymes and produced progesterone and 20 alpha- hydroxy-4-pregnan-3-one (20 alpha-OH-P) upon cAMP stimulation (Suh, B. S., and A. Amsterdam. 1990. Endocrinology. 127:2489-2500; Hanukoglu, I., B. S. Suh, S. Himmelhoch, and A. Amsterdam. 1990. J. Cell Biol. 111:1973-1981). In an attempt to restore the steroidogenic response to gonadotropins in immortalized cells, lutropin/choriogonadotropin (LH/CG- R) receptor expression plasmid was prepared by introducing the complete coding region of LH receptor cDNA (McFarland, K. C., R. Sprengel, H. S. Phillips, M. Kohler, N. Rosemblit, K. Nikolics, D. L. Segaloff, and P. H. Seeburg. 1989. Science (Wash. DC). 245:494-499) into a SV-40 early promoter based eucaryotic expression vector. Granulosa cells from preovulatory follicles were transfected with this LH receptor expression plasmid, together with SV-40 DNA and the Ha-ras oncogene. Cell lines obtained after this triple transfection accumulated cAMP in a dose-dependent manner in response to hCG. Moreover, they produced progesterone and 20 alpha-OH-P upon hCG stimulation with an ED50 of 125 pM and 75 pM, respectively, which is within the physiological range. Concomitantly with hCG induced differentiation, inhibition of cell proliferation was evident following stimulation with hormone concentrations as low as 40 pM. The number of hCG receptor sites per cell after numerous passages and several freezing and thawing cycles was 1.9 x 10(4), they showed a Kd of 180 pM. Stimulation with hCG induced pronounced morphological and biochemical changes in these cells including formation of mitochondrial located adrenodoxin, a marker enzyme for enhanced steroidogenesis. These findings make possible the expression in immortalized granulosa cells, of selectively mutated receptor molecules which preserve their steroidogenic potential, thereby opening the way to analysis of structure-function relationships of the receptor molecule.  相似文献   

19.
Chen LY  Huang YL  Liu MY  Leu SF  Huang BM 《Life sciences》2003,72(17):1983-1995
Amphetamine influences plasma and testicular testosterone levels. However, there is no evidence that amphetamine can directly influence Leydig cell functions. In the present study, a MA-10 mouse Leydig tumor cell line was used to determine whether and how amphetamine affected Leydig cell steroidogenesis. MA-10 cells were treated with different concentrations of amphetamine without or with human chorionic gonadotropin (hCG) and/or enzyme precursors over different time durations. Steroid production, enzyme activities and StAR protein expression were determined. Amphetamine alone had no any effect on MA-10 cell steroidogenesis. However, amphetamine (10(-11)M and 10(-10)M) significantly enhanced hCG-treated progesterone production at 3 hr in MA-10 cells (p < 0.05). Furthermore, amphetamine significantly induced more progesterone production upon treatment with 22R-hydroxycholesterol (p < 0.05), a precursor of P450 side-chain cleavage enzyme (P450scc). However, amphetamine did not induce more progesterone production when treated with pregnenolone (p > 0.05), a precursor of 3beta-hydroxysteroid dehydrogenase. In addition, the expressions of StAR protein and P450scc enzyme were not significantly different between hCG alone and hCG plus amphetamine treatment in MA-10 cells (p > 0.05). These results suggested that amphetamine enhanced hCG-induced progesterone production in MA-10 cells by increasing P450scc activity without influencing StAR protein and P450scc enzyme expression or 3beta-HSD enzyme activity.  相似文献   

20.
The pathways involved in activation of the ERK1/2 cascade in Leydig cells were examined in MA-10 cells expressing the recombinant human LH receptor (hLHR) and in primary cultures of rat Leydig cell precursors. In MA-10 cells expressing the recombinant hLHR, human choriogonadotropin-induced activation of ERK1/2 is effectively inhibited by overexpression of a cAMP phosphodiesterase (a manipulation that blunts the human choriogonadotropin-induced cAMP response), by addition of H89 (a selective inhibitor of protein kinase A), or by overexpression of the heat-stable protein kinase A inhibitor, but not by overexpression of an inactive mutant of this inhibitor. Stimulation of hLHR did not activate Rap1, but activated Ras in an H89-sensitive fashion. Addition of H89 to MA-10 cells that had been cotransfected with a guanosine triphosphatase-deficient mutant of Ras almost completely inhibited the hLHR-mediated activation of ERK1/2. We also show that 8-bromo-cAMP activates Ras and ERK1/2 in MA-10 cells and in primary cultures of rat Leydig cells precursors in an H89-sensitive fashion, whereas a cAMP analog 8-(4-chloro-phenylthio)-2'-O-methyl-cAMP (8CPT-2Me-cAMP) that is selective for cAMP-dependent guanine nucleotide exchange factor has no effect. Collectively, our results show that the hLHR-induced phosphorylation of ERK1/2 in Leydig cells is mediated by a protein kinase A-dependent activation of Ras.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号